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1 Introduction

In this appendix the basic Monte Carlo solution methods for de�nite integrals

and sums are outlined. These techniques are then straightforwardly extended

to certain integral and linear equations. All of the material of this appendix is

also covered in several of the classic Monte Carlo texts. This appendix di�ers

by being geared toward classes of problems that crop up in Computer Graphics.

Readers interested in a broader treatment of Monte Carlo techniques should

consult one of the classic Monte Carlo texts[2, 3, 1, 4].

2 Background

Before getting to the speci�cs of Monte Carlo techniques, we need several de�-

nitions, the most important of which are: random variable, expected value, and

variance.

Loosely speaking, a random variable x is a scalar or vector quantity that

`randomly' takes on some value, and the behavior of x is entirely described by

the distribution of values it takes. This distribution of values can be quantita-

tively described by the probability density function, f , associated with x (the

relationship is denoted x � f). If x ranges over some region 
, then the prob-

ability that x will take on a value in some subregion 


i

� 
 is given by the

integral:
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Here P (event) is the probability that event is true, so the integral is the proba-

bility that x takes on a value in the region 


i

. The measure � is the measure on

our probability space. In graphics 
 is typically an area (d� = dA = dxdy), or

a set of directions (points on a unit sphere: d� = d! = sin �d�d�). The density

f has two characteristics:

f(x) � 0 (Probability is nonnegative) (2)
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) = 1 (x has a value in 
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As an example, the canonical random variable � takes on values between zero

and one with uniform probability. This implies that:

f(�) =

�

1 if 0 � � � 1

0 otherwise

The probability that � takes on a value in a certain region is:

P (a < � < b) =

Z

b

a

1d�

0

= b� a

The average value a random variable will take on is called its expected value,

E(x):

E(x) =

Z

x

0
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The expected value has a surprising and useful property: the expected value

of the sum of two random variables is the sum of the expected values of those

variables (E(x + y) = E(x) + E(y)). This property holds whether or not the

variables are independent! Since the sum of two random variables is itself a

random variable, this principle generalizes. Since a function of x is itself a

random variable, we can write down the expected value of a function g(x):

E(g(x)) =

Z

x

0
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The variance, var(x), of a random variable is the expected value of the

square of the di�erence between x and E(x):

var(x) = E([x� E(x)]

2

) = E(x

2

)� [E(x)]

2

The variance of a sum of random variables is the sum of the variances if the

variables are independent. The square root of the variance is called the standard

deviation, which gives some indication of absolute deviation from the expected

value.

Many problems involve sums of independent random variables x

i

, where the

variables share a common density f . Such variables are said to be independent

identically distributed random variables. When the sum is divided by the number

of variables, we get an estimate of E(x):

E(x) �

1

N

N

X

i=1

x

i
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This idea can be generalized to the Law of Large Numbers:

P

"

E(x) = lim

N!1

1

N

N

X

i=1

x

i

#

= 1

This idea leads naturally to the idea of Monte Carlo estimation of integrals.

3 Monte Carlo Integration

From the last section we saw that for a function g and a random variable x � f ,

we can approximate the expected value of g(x) by a sum:

E(g(x)) =

Z
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Because the expected value can be expressed as an integral, the integral is also

approximated by the sum. The form of Equation 4 is a bit awkward; we would

usually like to approximate an integral of a single function h rather than a

product gf . We can get around this by substituting h = gf as the integrand:
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(5)

For this formula to be valid, f must be positive where h is nonzero.

Variance can be used to measure the reliability of the estimate. Both esti-

mates are unbiased, which means that the expected values are what we would

expect. The simple term h(x

i

)=f(x

i

) is called the primary estimator, and the

average of many primary estimators is a secondary estimator. The secondary

estimator is preferred because its variance is lower. The variance of the estimate

is:

var
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(6)

So to get a good estimate, we want as many samples as possible, and we want

the density h=f to have a low variance (similar shape). Choosing f intelligently

is called importance sampling, because if f is large where h is large, there will

be more samples in important regions. Equation 4 also shows the fundamen-

tal problem with Monte Carlo integration: diminishing return. Because the

variance of the estimate is proportional to 1=N , the standard deviation is pro-

portional to 1=

p

N . Since the error in the estimate behaves similarly to the

standard deviation, we will need to quadruple N to halve the error.

Another way to reduce variance is to partition 
, the domain of the integral,

into several smaller domains 


i

, and evaluate the integral as a sum of integrals
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method sampling function variance samples needed for

standard error of 0.008

importance (6� x)=(16) 56:8N

�1

887,500

importance 1=4 21:3N

�1

332,812

importance (x+ 2)=16 6:3N

�1

98,437

importance x=8 0 1

strati�ed uniform 21:3N

�3

70

Table 1: Variance for Monte Carlo Estimate of

R

4

0

x dx

over the 


i

. This is called strati�ed sampling. Normally only one sample is

taken in each 


i

(with density f

i

), and in this case the variance of the estimate

is:
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(7)

As an example of the Monte Carlo solution of an integral I set h(x) to be x

over the interval (0, 4):

I =

Z

4

0

x dx = 8 (8)

The great impact of the shape of the function f on the variance of the N sample

estimate is shown in Table 1. Note that the variance is lessened when the shape

of f is similar to the shape of h. The variance drops to zero if p = Ch, but

h is not usually known or we would not have to resort to Monte Carlo. One

important principle illustrated in Table 1 is that strati�ed sampling is often far

superior to importance sampling. Although the variance for this strati�cation

on I is inversely proportional to the cube of the number of samples, there

is no general result for the behavior of variance under strati�cation. There

are some functions where strati�cation does no good. An example is a white

noise function, where the variance is constant for all regions. A poorly chosen

strati�cation can even increase the variance for some functions.

4 Monte Carlo Solution to an Integral Equa-

tion

The `rendering equation' is a Fredholm Equation of the Second Kind. Such

equations have the form:

a(x) = b(x) +

Z

x

0

2


k(x; x

0

)a(x

0

)d�(x

0

)
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Where b and k are known. To apply the equipment of the last section we can

repeatedly substitute a into the integral:

a(x) = b(x) +

Z
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0

) +

Z

(x

0

;x

00

)2


2

k(x; x

0

)k(x

0

; x

00

)b(x

00

)d�(x

0

)d�(x

00

) +

Z

(x

0

;x

00

;x

000

)2


3

k(x; x

0

)k(x

0

; x

00

)k(x

00

; x

000

)b(x

000

)d�(x

0

)d�(x

00

)d�(x

000

) + � � �(9)

A primary estimator for the �rst integral in the series is:
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(10)

A primary estimator for the second integral is:
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(11)

And the third integral:
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0
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0
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)

f
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00

; x

000

) � f

3

(12)

We could simple estimate each integral separately and add these estimates to

form a estimate for the truncated series. What is usually done, however, is

to reuse the share sample points between integrals. To do this, we choose a

chain of samples (x

1

; x

2

; x

3

; � � � ; x

n

). The estimator for the �rst n integrals in

Equation 9 is:

a(x) = b(x) +

k(x; x

1

)b(x

1

)

f

1

(x

1

)

+

k(x; x

1

)k(x

1

x

2
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2

)

f
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)

+
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1
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1
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2
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2
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3
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3

)

f

3

(x

1
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2

; x

3

)

+

.

.

.

k(x; x

1

) � � �k(x

n�1

; x

n

)b(x

n

)

f

n

(x

1

; � � � ; x

n

)

(13)

We should probably have some misgivings about reusing the sample points for

each integral, but this will not bias our sample because, as stated earlier, the

expected value of a sum is the sum of expected values, even if the variable being

summed are not independent.

5



5 Monte Carlo Estimates of Sums and Linear

Equations

The techniques used to estimate integrals can also be used to estimate sums.

One way to see this is to consider a sum to be a special case of an integral

(and discrete probability a special case of continuous probability). A primary

estimator for a sum is:

N

X

i=1

h

i

�

h

i

f(i)

Here f(i) is the probability of choosing h

i

. As with integrals, a lower variance

secondary estimator can be developed by averaging multiple instances of the

primary estimator.

Just as Monte Carlo integration extends to integral equations, Monte Carlo

summation extends to linear equations. Consider the linear system:

x = b+ Ax

where x is an unknown column vector of length N , b is a known column vector

of length N , and A is a known N�N matrix. As with integrals, we �rst expand

the equation into a series:

x = b +Ab+ A

2

b +A

3

b+ � � �

Any particular element of x is given by:

x

i

= b

i

+

N

X

j=1

A

ij

b

j

+

N

X

j=1;k=1

A

ij

A

jk

b

k

+

N

X

j=1;k=1;l=1

A

ij

A

jk

A

kl

b

l

+ � � � (14)

As with the integral equations, we can generate a series (j; k; l;m; � � �), and

generate a primary estimator for x

i

:

x

i

� b

i

+

A

ij

b

j

f

1

(j)

+

A

ij

A

jk

b

k

f

2

(j; k)

+

A

ij

A

jk

A

kl

b

l

f

3

(j; k; l)

+ � � � (15)

6



6 Generating RandomNumbersWith Non-Uniform

Densities

For Monte Carlo methods we must often generate random points according to

some probability density function, or random rays according to a directional

probability density. In this section a method for one and two dimensional ran-

dom variables is described. The discussion closely follows that of Shreider[3].

If the density is a one dimensional f(x) de�ned over the interval x 2 [a; b],

then we can generate random numbers �

i

that have density f from a set of

uniform random numbers �

i

, where �

i

2 [0; 1]. To do this we need the probability

distribution function F (x):

F (x) =

Z

x

a

f(x

0

)d�(x

0

) (16)

To get �

i

we simply transform �

i

:

�

i

= F

�1

(�

i

) (17)

where F

�1

is the inverse of F . If F is not analytically invertable then

numerical methods will su�ce because an inverse exists for all valid probability

distribution functions.

If we have a two dimensional density (x; y) de�ned on [a; b : c; d] then we

need the two dimensional distribution function:

F (x; y) =

Z

y

c

Z

x

a

f(x

0

; y

0

)d�(x

0

; y

0

) (18)

We �rst choose an x

i

using the marginal distribution F (x; d), and then

choose y

i

according to F (x

i

; y)=F (x

i

; d). If f(x; y) is separable (expressable as

g(x)h(y)), then the one dimensional techniques can be used on each dimension.

To choose re
ected ray directions for zonal calculations or distributed ray

tracing, we can think of the problem as choosing points on the unit sphere

or hemisphere (since each ray direction  can be expressed as a point on the

sphere). For example, suppose that we want to choose rays according to the

density:

p(�; �) =

n+ 1

2�

cos

n

� (19)

Where n is a Phong-like exponent, � is the angle from the surface normal

and � 2 [0; �=2] (is on the upper hemisphere) and � is the azimuthal angle

(� 2 [0; 2�]). The distribution function is:

P (�; �) =

Z

�

0

Z

�

0

p(�

0

; �

0

) sin �

0

d�

0

d�

0

(20)

7



The cos �

0

term arises because on the sphere d! = cos �d�d�. When the

marginal densities are found, p (as expected) is separable and we �nd that a

(r

1

; r

2

) pair of uniform random numbers can be transformed to a direction by:

(�; �) = (arccos((1 � r

1

)

1

n+1

); 2�r

2

) (21)

One nice thing about this method is that a set of jittered points on the unit

square can be easily transformed to a set of jittered points on the hemisphere

with a distribution of Equation 19. If n is set to 1 then we have a di�use

distribution needed for a Monte Carlo zonal method.

Other example results are: to choose points uniformly from a disk of radius

R, apply the transformation � = 2�r

1

, r = R

p

r

2

. To choose random points

on a triangle de�ned by vertices p

0

, p

1

, and p

2

, apply the transformation: a =

1�

p

1� r

1

, b = (1�a)r

2

, and the random point p will is: p = p

0

+a(p

1

�p

0

)+

b(p

2

� p

0

).
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