
CHAPTER 6

ZONAL SOLUTION METHODS

In zonal methods, the radiances of a scene are computed in advance of rendering in a view-

independent process. In this chapter, zonal methods and their relation to image methods are

discussed. In Section 6.1, the zonal method for di�use environments is discussed, both in

terms of linear systems of equations and in terms of physical simulation. Section 6.2 outlines

optimization strategies for zonal environments, and speculates that the O(N

2

) time complexity

of zonal methods can be beat. That section includes a proof that the expected number of rays

needed for a zonal solution is O(N). In Section 6.3, zonal methods for specular and glossy

environments are discussed, and zonal and image-based methods are combined in a general

way. This approach has the advantage over previous approaches to glossy environments that

only the storage needed for each reection type is required. Section 6.4 summarizes the content

of this chapter.

6.1 Zonal Methods for Di�use Environments

The simplest zonal methods assume all surfaces are di�use reectors[40]. First the environment

is subdivided into N discrete patches that are assumed to be constant in reectance, reected

103

power, and emitted power. The reectance (R

i

) and emitted power (�

e

i

) are known, and the

reected power (�

r

i

) is unknown. If we solve for �

r

i

, then we can �nd �

i

, the total power coming

from the ith patch.

Once the total power of each patch is found, it can be converted to radiance using Equa-

tion 4.1. These radiance values can then be interpolated to form a smooth appearance[23]. The

next several sections show methods of solving for �

i

.

6.1.1 Di�use Zonal Methods as Linear Algebraic Equations

The total power coming from the ith surface is the sum of emitted and reected power: �

i

=

�

e

i

+�

r

i

. The reected power is the reectivity times the incoming power. The incoming power

is a fraction of the outgoing power of the other surfaces. The fraction of the outgoing power from

surface source that hits surface target is called a form-factor (or view-factor or con�guration

factor), and is denoted f

source!target

. This yields an expression for the total power coming

from surface i:

�

i

= �

e

i

+ R

i

N

X

j=0

f

j!i

�

j

(6:1)

Conservation of energy implies:

N

X

i=0

f

j!i

�

j

� 1

with equality if the system is closed. Equation 6.1 can be written down in matrix form:

A� = �

e

(6:2)

104

Where the matrix A is:

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(1�R

1

f

1!1

) �R

1

f

2!1

�R

1

f

3!1

� � � �R

1

f

N!1

�R

2

f

1!2

(1� R

2

f

2!2

) �R

2

f

3!2

� � � �R

2

f

N!2

�R

3

f

1!3

�R

3

f

2!3

(1� R

3

f

3!3

) � � � �R

3

f

N!3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�R

N

f

1!N

�R

N

f

2!N

�R

N

f

3!N

� � � (1� R

N

f

N!N

)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(6:3)

It can be shown that the system rewritten in terms of radiance is diagonally dominant (though

not sparse), so a Gauss-Seidel iterative method can be used to solve for �[23]. The Gauss-Seidel

method will require O(N

2

) solution time, and the matrix A will require O(N

2

f) initialization

time, where f is the average time to calculate a form-factor. The storage requirement is O(N

2

)

because A has N

2

elements.

6.1.2 Di�use Zonal Methods as Light Transport Simulation

Another way to look at solving for � is to use direct simulation. We �rst set our estimate of

�

i

to be �

e

i

for all i. For each surface i that has non-zero �

e

i

, we can shoot a set of n

i

energy

packets each carrying a power of �

e

i

=n

i

. When a packet with power � hits a surface j, we can

add R

j

� for our estimate of �

j

, and reect a new energy packet with power R

j

�. This energy

packet will bounce around the environment until it is depleted to a point where truncation is

used. This basic energy packet tracing technique has been used in Heat Transfer[55, 28, 113],

Illumination Engineering[108], and Physics[105, 58].

This method, which I call reection simulation, has the problem that each reection is

followed by a ray intersection test to �nd the next surface hit. The later reections will carry a

relatively small amount of power, so tracing these later rays is somewhat wasteful in the sense

that we have bad `load-balancing': some rays do more work than others. One solution to this

105

problem is to replace the reection model with a model where light is absorbed and immediately

reemitted (after attenuation by the reectance). A scene where light is absorbed and reemitted

in this way looks exactly like a scene where light is reected, so solving for the transport in

either model will yield the same solution.

To solve for the absorb and reemit model, we can again send power in bundles from light

sources. When a bundle carrying power � hits a surface j, the absorbed power that will later

be reemitted by surface j can be increased by R

j

�. After each light source emits its power,

reective surfaces can, in turn, emit their absorbed power. The e�ciency of this method is

best if surfaces with the greatest amount of power send their power �rst. This method, which

I call absorb and reemit simulation, is used in computer graphics, where it is called progressive

re�nement radiosity[22]. The form factors needed to send energy from a given patch are usually

calculated on the y, so there is no O(N

2

) storage requirement. This space optimization could

also be done in the Gauss-Seidel solution, since only one row of the matrix is used at a time.

6.1.3 Form Factor Calculation

If the absorb and reemit simulation method is used, the crucial step occurs when the designated

source patch sends its power into the environment. The most straightforwardmethod of sending

this power is the Monte Carlo method[69, 1, 2, 100], where a random set of energy bundles is

emitted (as rays) in a di�use distribution, and these power carrying rays are sent to the other

surfaces (generating rays in a di�use distribution is discussed in Appendix B). This method is

shown in Figure 6.1, where the grey source patch is sending many rays into the environment.

Figure 6.2 shows a simple environment, similar to that used by [40, 72], with radiances calculated

by the Monte Carlo method.

106

Figure 6.1: Monte Carlo emission of energy.

Figure 6.2: Zonal solution for di�use scene.

107

Figure 6.3: Analytic emission of energy.

Another way to send power is to explicitly calculate the energy sent from the source zone

to every other zone, as shown in Figure 6.3. I call this way of transporting power an analytic

method. If a ray between two patches is interrupted, then no power is sent between that pair.

Wallace used this basic method combined with some optimizations and vertex oriented energy

transport[118]. Another analytic method was used by Nishita and Nakamae who used shadow

volumes to test for visibility[79]. A ray tracing-based analytic method has also been used in

Illumination Engineering, though the method was restricted to rectangular zones aligned with

the coordinate planes[15].

The classic way to send energy is by using a Hemicube method[23]. This method, shown

in Figure 6.4, sends power into directional bins on the surface of a cube surrounding the zone.

All of the energy sent through a directional zone goes to whatever patch is �rst seen through

the center of the zone. Because of this the Hemicube is prone to aliasing. Artifacts arising

from aliasing of the Hemicube can be lessened by increasing the Hemicube's directional resolu-

108

Figure 6.4: Hemicube emission of energy.

tion, rotating the hemicube by a random angle about the surface normal of the source patch,

or employing correction techniques such as those presented by Baum et al.[8]. Methods of

accelerating the Hemicube method by using hardware features, spatial coherence, and pixel

coherence, are discussed by Rushmeier et al.[90]. One problem with the Hemicube method is

that it approximates the parent patch as a point, so if a `sending' scheme is used, shadows will

be sharp.

The Hemicube and Monte Carlo methods of transporting power can be said to be in a family

of methods that divide energy into angular bins. Other methods that do this are the ray tracing

method of Sillion and Puech[103], and the Hemisphere method of Spencer[107]. Rather than

sending power in directions, the analytic methods send power explicitly between each pair of

zones. The advantage of the directional methods is that the amount of precision they employ is

proportional to the solid angle subtended by the target patch. This avoids wasting much time

109

Figure 6.5: Zonal calculation with di�usely transmitting lampshade.

on small, far away patches. On the other hand, the error is not nearly as easy to predict as it

is with analytic methods.

All of these methods could be used for di�use transmission, as done by Rushmeier and

Torrance[94]. An image with a di�usely transmitting lampshade is shown in Figure 6.5.

6.2 Optimizations for Di�use Zonal Methods

Generating an image by the simulation methods of the last section require O(Ns) where N

is the number of emitting zones, and s is the amount of time it takes for one zone to send it

accumulated power. This is because the solution will have an acceptable average error after

a set number of reections of light (usually 4 to 20 depending on average reectivity in the

scene), and each full set of reections is approximated by all N zones �ring their power once.

Two basic optimizations are to reduce the number of patches N that send power, and to reduce

the time s spent sending the power.

110

Figure 6.6: Four elements are collected into one patch before sending power.

6.2.1 Patch and Element Substructuring

The oldest optimization in zonal methods is patch and element substructuring[24]. Because

indirect lighting is often soft, i.e. it does not change much in character over a distance, we can

calculate some of this lighting with decreased accuracy. One way to do this is to collect several

small zones, or elements, into one large patch which emits the accumulated power of the group

of elements. The softness of the indirect component is shown in Figure 6.7, while the direct

lighting can be hard, as shown in Figure 6.8. An emitting patch made up of four elements

is shown in Figure 6.6. If zones can be constructed out of sets of e elements, and N is the

total number of zones, then the time complexity can be reduced from the naive case of O(Ns)

to O(Ns=e). Another speedup is to only use the elements for direct lighting, so the indirect

lighting will have a reduced number of receiving zones[100]. Hanrahan and Salzmann have

recently introduced a generalization of this idea where the patches are divided hierarchically

into elements, and the level of size used to account for transport between two patches is based

111

Figure 6.7: Indirect illumination.

Figure 6.8: Direct illumination.

112

on the amount of power they exchange[48]. Though they have not yet extended their method

to environments with occlusion, their initial results are very promising. Campbell and Fussell

have extended adaptive meshing to non-quadtree data structures[17], and their initial results

are accurate for shadows.

To get some insight into why the substructuring idea works, imagine that we are �guring

the radiance at a point x that is due to a collection of elements. This is simply:

L(x) =

Z

elements

R(x)

�

L

in

(x;) cos �d!

We approximate this with a patch of radiance L

ave

with the same solid angle as the elements.

This amounts to approximating the cosine term with cos �

0

, where �

0

is the angle to the center

of the patch. If the patch is reasonable small, the maximum error will be small. In practice, if

there are few regularities in the element radiances, the average error will be even lower.

A possible problem of all substructuring techniques is that if the initial discretization into

patches is very �ne, no subdivision may be needed (e = 1), so no speedup is attained.

6.2.2 Speeding Up the Emission of Power

The other way to speed up the zonal method is to reduce the amount of time it takes for a patch

to emit power. The main way this is done is to reduce the accuracy of the solution if not much

energy is being sent. Baum et al. did this by using a lower resolution Hemicube for indirect

lighting[8]. Airey and Ouh-young used a Hemicube for direct lighting and then switched to ray

tracing with the number of rays being proportional to the energy a patch has to send[1]. I used

a strictly Monte Carlo method with the number of rays sent being set proportional to unsent

power[100].

113

Figure 6.9: Rooms where each column has a number of rays proportional to the number of

zones.

6.2.3 Optimal Time Complexity

Both Airey and I have empirically observed that the initial number of rays needed in the

Monte Carlo approach is approximately proportional to the number of zones N . An example

set of �gures using this heuristic is shown in Figure 6.9, where the error does seem to go

down consistently as the number of rays is kept proportional to the number of zones. This

has the surprising implication that we can generate a zonal solution with O(N) rays, so the

solution time is approximately O(logN). This assumes that the average time to trace a ray is

O(N logN), which is often true for divide and conquer search strategies in well-behaved scenes.

However, the worst case behavior of ray tracing may be quite poor. Devillers[29] has done

some initial work on the time needed to trace a ray, but it is still largely an unexplored topic.

One unfortunate thing about sending rays in numbers proportional to power is that patch and

114

