
CHAPTER 5

IMAGE SPACE SOLUTION METHODS

Traditionally, most graphics programs produce pictures by determining a color value for each

pixel of a raster screen. This is done in two steps: �nding out which surface is visible through

that pixel, and �nding the radiance coming from the surface toward the pixel. This class of

methods operates by �nding only those radiances that contribute to the image. In some sense

this is really solving for I by using lazy evaluation of the Global Radiance Function; we �nd

radiances at only those locations that are visible. In this chapter these image based methods

will be described, and some extensions of previous techniques will be shown.

In Section 5.1, the concept of the image function, I , will be expanded, and weighted area

averaging techniques of converting I to a discrete (raster) image will be discussed. That discus-

sion also includes some guidelines for selecting �lters (weighting functions) that disallow many

standard �lters such as the cone, pyramid, sinc, and nice. A new �lter that does satisfy the

guidelines, while maintaining some of the good characteristics of the standard �lters, is also

presented.

Section 5.2 outlines the use of direct lighting and the ambient term in traditional computer

graphics. Whitted-style ray tracing is presented in Section 5.3. More modern stochastic ray

tracing methods, including a careful review of the basic mathematics behind them, are presented
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in Section 5.4. A new method of shadow ray optimization, where only one shadow ray is sent

for each viewing ray, is also described.

In Section 5.5, methods of static sampling (where the number of samples in a pixel is pre-

determined) are reviewed and compared. This discussion di�ers from that of previous authors

in Computer Graphics because the machinery of Integration Theory, rather than Signal Pro-

cessing, is used to predict sampling performance. In addition, a new static sampling method

that has several advantages over even Poisson Disk sampling is presented. Adaptive sampling

methods are reviewed in Section 5.6, and a new adaptive strategy is presented. That section

also argues, against prevailing wisdom, that hierarchical sampling cannot be straightforwardly

applied to Distributed Ray Tracing because of the peculiarities of the sampling space used when

performing Uncorrelated Jittering.

In this and the next two chapters, issues of color will be ignored. The implications of adding

wavelength dependencies will be addressed in Chapter 7.

5.1 The Image Function

As outlined in Chapter 1, we can create an image using a viewer model (Figure 1.1) or camera

model (Figure 1.3). Ultimately, we will display the image on a device, or generate hardcopy

using a �lm recorder or color printer. Almost all display devices we might use are digital and

represent pictures with a rectangular lattice of pixels (short for picture elements). To set values

for these pixels, most devices use one number (three or four values for color systems).

Assuming we want to produce a greyscale image for a digital display device, we have to

create a digital image, speci�ed by a number (usually one byte long) for each pixel. In other

words, we need to specify all values P (x

i

; y

j

), where i and j are row and column numbers on
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the device. Currently, a high-end RGB monitor will be 2048 by 1536 or 1280 by 1024. These

are some of the few numbers not going up explosively in the computer industry. A color �lm

recorder or color printer will often have greater resolution, with up to 200 points per inch for a

thermal color printer, and up to 800 points per inch for a �lm recorder[36].

Assuming we have a pin-hole camera model speci�ed by a pin-hole location and a �lm-plane,

then we �rst wish to �nd the radiance at the pin-hole seen from each spot on the �lm. This

radiance determines the �lm response at each point, and can be described by the image function

I(x; y), where x and y are coordinates on the plane. Usually the �lm is assumed to be perfectly

linear in response, with in�nite resolution. Assuming I is known, then we can set pixel values:

P (x

i

; y

j

) = f

ij

(I(x; y))

Where f

ij

is a function that operates on I . Usually one function f is used for all f

ij

, and f

typically is the integral of a weighting function w (centered at (x

i

; y

i

)) multiplied by I :

P (x

i

; y

j

) =

Z

w(x� x

i

; y � y

i

)I(x; y)dA

Here the of area integration is wherever the weighting function is nonzero. This region is called

the support of w. Because we do not want the pixel value to change when an image is 
ipped

horizontally or vertically about that pixel, w will usually be symmetric about both the x and

y axes. By similar logic, w should be diagonally symmetric so that 90

�

rotations in I will give

90

�

rotations in the digital image. In practice, the support of w will be only a few pixels across,

so that P (x

i

; y

i

) depends on values of I nearby (x

i

; y

i

).

If we'd like the overall radiance of the digital image to be similar to the overall radiance

seen by the �lm plane, w should have unit volume:

Z

w(x; y)dA = 1
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If radiance scaling is desired, then some other constant than one can be used. This idea can be

extended by requiring that the average intensity of the digital image is the same as the original

continuous image. In other words, a small feature moving in the continuous image should not

cause `twinkling' in the digital image[36]. This can be stated quantitatively by requiring that

the total contribution of a impulse (delta function) is the same regardless of position:

X

i

X

j

w(x� x

i

; y � y

i

) = constant

This constraint ensures that the DC component of the original and discrete images will be the

same. This is equivalent to the constraint imposed by Mitchell and Netravali[74]. The example

of an impulse in I also implies that w should be strictly nonnegative to avoid the possibility of

negative pixel colors. In summary, we want w to have several features:

1. w has unit area.

2. w is horizontally, vertically, and diagonally symmetric.

3. The support of w has limited width.

4. w � 0 for all x and y.

5.

P

i

P

j

w(x� x

i

; y � y

i

) = constant.

In addition, w may have either or both of two additional simplifying features[35]:

A. w is separable: w(x; y) = a(x)a(y)

B. w is rotationally symmetric: w(x; y) = a(x

2

+ y

2

)

A commonly used w that has all of the required features and is separable is a positive

constant on a square centered at the origin. The width of the square is usually set to be the

distance between pixel centers, but can be wider. This function is usually called a box �lter.

In most of the graphics literature, the preceding discussion is usually viewed using signal

processing theory. The image function I is convolved with a �lter g, and becomes a new image

function I

0

. The pixel values are then set by letting:

P (x

i

; y

j

) = I

0

(x

i

; y

i

)� (f � I)(x

i

; y

i

)
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Figure 5.1: Images generated by (left to right, top to bottom) nonuniform �lter, box �lters

with one pixel width, two pixel width, and three pixel width. The circular pattern on the left

of each image is correct, while the circular pattern centered in the middle and on the right are

caused by aliasing.
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This approach is surveyed clearly by Blinn[13, 12]. Its limits and implications were deeply

investigated by Kajiya and Ullner[59]. Because the shape of the intensity function of real

pixels, and because our error metric is perceptual, signal processing theory does not yield an

easy answer for what w is best[59]. There is, however, some consensus that signal processing

theory implies that a nonuniform w with a maximum at the origin is preferable to a box

�lter[50, 51, 70, 36].

To develop an example of a nonuniform w, we can �rst assume a support that is restricted

to at most a square of two pixel widths centered at the origin. We can further assume that w

is separable (w(x; y) = a(x)a(y)) and that a is a cubic:

w(x; y) =

�

Ajxj

3

+ Bjxj

2

+ Cjxj+D

��

Ajyj

3

+Bjyj

2

+ Cjyj+D

�

Note that this w is not circularly symmetric. Applying conditions 1-5 leaves yields four equations

that imply A = B = 0, C = �1, and D = 1:

w(x; y) = (1� jxj) (1� jyj)

This w is similar to the bilinear �lter shown in Figure 3 of [37]. In Figure 5.1, this nonuniform

w and box �lters of width one, two and three pixels is applied to the rather pathological image

function I(x; y) = sin(x

2

+ y

2

). The origin is just to the left of each image. The concentric

pattern on the left is `real', and the others are artifacts caused by the regular grid of pixels and

the character of w. The nonuniform w minimizes unwanted artifacts without excessive blurring

of desired features.

It should be emphasized that the best w may be highly dependent on the display used.

Amanatides and Mitchell have shown that NTSC displays in particular must be handled as a

special case[4].
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Figure 5.2: A thin lens camera

5.1.1 Finite Aperture Camera Model

A simple lens camera model can be substituted for a pin-hole camera model. This will make

some objects appear to be blurred because of focusing e�ects. Such camera models have been

used in both scanline[20, 86] and ray tracing[26] applications. In this model, the image function

I(x; y) is no longer the radiance seen through the pin-hole; instead it is the average radiance

seen on the lens area from (x; y). The lens is assumed to be `thin', so that it obeys certain

rules illustrated in Figure 5.2: all light coming to point (x; y) passes through a point p on a

plane of perfect focus; light traveling through the center of the lens will be unde
ected; light

passing through a focal point will be de
ected by the lens along the axis of the lens. The second
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Figure 5.3: Three Fujis on brushed steel. The middle Fuji is in the plane of perfect focus.

and third rules can be used to determine p for a particular (x; y)

1

. Figure 5.3 shows a image

calculated using a thin lens camera model.

Averaging the radiance seen at the lens means the image function for a lens of area A is:

I(x; y) =

1

A

Z

q on lens

L(q;q� p)dA

This means the expression for pixel intensity becomes:

P (x

i

; y

j

) =

1

A

Z Z

q on lens

w(x� x

i

; y � y

i

)I(x; y)L(q;q� p)dAdA

0

Thus, even if L is known, creating a digital image for a particular viewpoint is not trivial! One

thing to note is that I does not drop o� as the solid angle subtended by the lens decreases when

(x; y) strays from the center of the �lm (as is also true for the pin-hole model).

1

This will break down for (x;y) = (0; 0). Instead, the distance to the plane of perfect focus can be calculated,

and the ray from (x; y) through the center of the lens will intersect the plane at p.
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Figure 5.4: The image function at (x; y) is the radiance at x traveling toward the pin-hole.

5.2 Direct Lighting

As was seen in the last section, a pixel color can be determined by integrating the radiances

seen in all directions. From the Ray Law, these radiance are the radiances L

out

coming from the

surfaces seen in those directions (see Section 3.2). For the pin-hole camera model, this means

the image function I at a point (x; y) is:

P (x

i

; y

j

) = L

out

(x;  )

where x is the point on the surface seen through the pin-hole, and  is the direction from x

to the pin-hole, as shown in Figure 5.4. To accurately �nd L

out

(x;  ), we would need to solve

the rendering equation (Equation 3.4) at x. As an approximation, we can calculate the direct

light re
ected at x. Multiple re
ections of light are not considered. Kajiya calls such methods

Utah Models because of the pioneering work in this type of algorithm done at the University of

Utah[61]. The bene�t of a Utah Model is that the lighting calculation at x is entirely local.
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Usually Utah Models assume that the light sources are point light sources in�nitely far

away. This allows Equation 3.4 to be evaluated for only one  

in

.

5.2.1 Ambient Light

One problem with assuming only direct lighting is that the approximation is guaranteed to be

too small. As a �rst approximation to �xing this problem, an arbitrary constant, the ambient

lighting, is added to L(x;  

in

). The ambient term is supposed to approximate the indirect

lighting at x. Because indirect lighting is not constant, the ambient term will be in error for

most x. One technique for lowering the ambient error used in some graphics packages is to

allow ambient terms to be speci�ed for each object. Unfortunately, making good use of such a

feature is more art than science.

One way to think of ambient lighting is to assume all radiance values visible from a point

are some constant L

0

. This L

0

is the appropriate value for the ambient component.

Researchers at Cornell have devised a method to intelligently guess a `good' global ambient

term for di�use environments[22]. To do this they �rst calculate the average re
ectance R

and total surface area A in the environment. They then �nd the total power � emitted by

all light sources. The fraction of � re
ected immediately after being emitted by the sources

is approximately R�. Extending this idea to subsequent bounces estimates that the indirect

power coming to a surface is approximately:

�

indirect

� �(R+R

2

+R

3

+ � � �) = �

R

1�R

Using Equation 4.1, this implies the ambient light re
ected at x, L

a

(x), is:

L

a

(x) = R(x)

�

indirect

�A
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5.3 Whitted-Style Ray Tracing

The Utah Models perform best for primarily di�use scenes. Kay used Snell's Law and ray tracing

to include refractive e�ects[64]. Whitted used slightly more general ray tracing techniques to

extend Utah Models to include perfect specular e�ects and shadows[121]. His technique is

usually called ray tracing, but because that term has become so overloaded, I will refer to it as

Whitted-style ray tracing.

In Whitted-style ray tracing, the image function I(x; y) is calculated by sending a ray from

(x; y) through the pin-hole, and determining the �rst point p hit by the ray. If p lies on a

non-specular surface, then a Utah model is applied. However, the contribution of a particular

light source is only counted if p is not in shadow relative to that source. Whether a point is in

shadow is determined by sending a ray toward the light source and seeing if it hits any objects

before the light.

If p is on a specular surface, then the radiance is calculated by attenuating the radiance

seen in the direction of re
ection. If the surface is not opaque, the attenuated color in the

transmitted direction is added. Figure 5.5 shows how Whitted's method would process several

rays.

We can implement Whitted's approach as a recursive function that evaluates the Global

Radiance Function for a particular viewpoint. Suppose we have such a function, L

p

(x; y)

de�ned for the �lm plane. This function could be written in terms of the Global Radiance

Function L(p;  ):

radiance function L

p

(real x, real y)

L

p

returns the radiance value seen at (x; y) on �lm plane

coming from direction of pin-hole.

begin

direction  

point o
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* point light

diffuse plane

glass sphere

metal sphere

Figure 5.5: Several rays traced from the �lm plane. The solid lines are viewing rays, and the

dashed lines are shadow rays.
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point ph

o = position of (x; y) in object space

ph = position of pin-hole in object space

 = o � ph

return L(o;  )

end (L

p

)

The Global Radiance Function also returns a radiance:

radiance function L(point o,  )

L returns the radiance value seen at o coming from direction  

begin

point p

if ray o� t misses everything then

return background radiance

else

�nd intersection point p of �rst object hit by ray

if (object is opaque specular)

�nd incoming re
ected direction,  

r

, by Equation 2.2

return k

s

L

in

(p;  

r

)

else if object is transparent specular

�nd incoming re
ected direction,  

r

,by Equation 2.2

�nd incoming transmitted direction,  

t

, by Equation 2.3.

return k

s

L

in

(p;  

r

) + k

t

L

in

(p;  

t

)

else apply Utah Model

 

s

= (l� p)

if ray p � t 

l

hits something close than l then

return R(p)L

ambient

else

return R(p)L

ambient

+ direct lighting from l.

end (L

p

)

If a series of specular objects is hit we will have in�nite recursion. Whitted avoids this by

returning zero radiance after a certain number of re
ections. Hall and Greenberg suggest stop-

ping the recursion adaptively based on accumulated attenuation[44]. The adaptive technique

is especially good when clear objects are present, and the internal re
ections cause branching.

In some sense, Whitted-style ray tracing simply provides Utah-shaded objects, and re
ec-

tions of Utah-shaded objects. This is coupled with the shadow ray technique that allows objects

to shadow one another.
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5.4 Stochastic Ray Tracing

Among the problems with Whitted-style ray tracing, and most other techniques that preceded

ray tracing, is that they do not account for a �nite aperture camera, non-point light sources, area

sampling of I , or non-specular indirect lighting. Cook et al. attacked all of these problems at

once by realizing that the intensity level for a pixel can be written as a multidimensional integral,

and that classic Monte Carlo integration techniques can be used to solve that integral[26]. In

this section Cook et al.'s technique is presented, followed by the other stochastic techniques of

Kajiya and Ward et al.

5.4.1 Cook et al.'s Distributed Ray Tracing

The fundamental idea of Cook et al. is to perform a numerical integration for every pixel[26, 25,

14, 41]. Rather than using conventional regular quadrature techniques, they use stochastically

distributed sample points. Using random sample points does not necessarily have a smaller

error than regular sampling

2

, but the random method's error will be less visually objectionable

because there will not be coherence in the error between pixels.

For some insight into how the numerical integration is applied, consider the expression for

the intensity of a pixel:

P (x

i

; y

j

) =

Z Z

w(x� x

i

; y � y

i

)I(x; y)dxdy (5:1)

In Appendix B, it is shown that we can approximate an integral with a primary unbiased

estimator:

Z

a

0

2


h(a

0

)d�(a

0

) �

h(a)

f(a)

2

Traditionally, Monte Carlo integration has better asymptotic error behavior if the dimension of the integral

is su�ciently large[109], as it often is in graphics applications.
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where a is a random variable with probability density function f . Saying that h(a)=f(a) is an

unbiased estimator for the integral simply means that the expected value is the value of the

integral. We can come up with a `better' unbiased estimator for the integral by averaging many

of the primary estimators to form a secondary estimator:

Z

a

0

2


h(a

0

)d�(a

0

) �

1

N

N

X

i=1

h(a

i

)

f(a

i

)

The secondary estimator is better simply because it has a lower variance. The Law of Large

Numbers tells us that the secondary estimate will converge to the value of the integral with

probability one as N goes to in�nity.

Assuming we know how to evaluate I , we can easily write down a primary estimator for the

integral of Equation 5.1. First, assume that the pixel area is one (the distance between pixel

centers is one), and that w is zero outside the pixel area. Using a constant probability density

function f = 1 inside the pixel, and f = 0 outside the pixel will generate random points a on

the pixel area. Thus the primary estimator will be:

P (x

i

; y

j

) =

Z Z

w(x� x

i

; y � y

i

)I(x; y)dxdy � I(a

x

; a

y

) (5:2)

As discussed earlier, the secondary estimator is found by averaging a series of the primary

estimators. Strati�ed sampling can be employed by subdividing the domain of the integral in

Equation 5.2 and summing the primary estimator of each of these integrals.

Suppose instead that we use the nonuniform w = (1 � jxj)(1 � jyj) with a width of two.

Without loss of generality, assume that x

i

= y

j

= 0 (a change of coordinates):

P (x

i

; y

j

) =

Z

1

�1

Z

1

�1

(1� jxj)(1� jyj)I(x; y)dxdy (5:3)
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A naive primary estimator can again be found with a uniform density f(a

x

; a

y

) = 0:25 on the

support of w:

Z

1

�1

Z

1

�1

(1� jxj)(1� jyj)I(x; y)dxdy � 4(1� ja

x

j)(1� ja

y

j)I(a

x

; a

y

) (5:4)

We can instead use a nonuniform f for choosing sample points with density f . If our choice

of f is wise (i. e. reduces variance of the primary estimator), then we are using importance

sampling. A natural choice is f = w because the expressions are simpli�ed:

Z

1

�1

Z

1

�1

(1� jxj)(1� jyj)I(x; y)dxdy � I(a

x

; a

y

) (5:5)

Using a nonuniform f will require generating nonuniform random numbers. As shown in Ap-

pendix B, a series of one dimensional independent identically distributed according to f ran-

dom variables (�

1

; �

2

; �

3

; : : :) (abbreviated �

i

� f) can be generated by suitably transforming

a series of canonical random numbers (�

1

; �

2

; �

3

; : : :). Canonical random numbers are simply

uniformly distributed random numbers between zero and one. The actual transformation for a

given f is:

�

i

= F

�1

(�

i

) (5:6)

where F

�1

is the inverse of the probability distribution F associated with the probability density

f :

F (x) =

Z

x

�1

f(x

0

)dx

0

(5:7)

Generating multidimensional random variables is more di�cult, but can usually be done in a

generalization of the inverse distribution procedure if f is su�ciently well behaved (see Ap-

pendix B). For separable densities, f(x; y) = g(x)h(y), we can choose (�; �) pairs with density

f by choosing � according to g and � according to h.
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stratification
of w(x,y)

stratification of
lens area

Figure 5.6: 16 rays �red from one stratum of pixel toward 16 strata on lens

.

Getting back to our pixel sampling, the weighting function f(x; y) = (1 � jxj)(1 � jyj) is

separable, and g = h, so we can generate (�

x

; �

y

) pairs according to f(x) = (1 � jxj). The

distribution function for this f is:

F (x) =

Z

x

�1

(1� jx

0

j)dx

0

=

1

2

+ x �

1

2

xjxj (5:8)

and thus the inverse of F is:

F

�1

(x) =

8

>

>

>

<

>

>

>

:

1�

p

2(1� x) if x � 0:5

�1 +

p

2x if x < 0:5

(5:9)

Thus, using (F

�1

(�

i

); F

�1

(�

j

)) from Equation 5.9 will generate pairs (�

i

; �

j

) with density

f(x; y) = (1� jxj)(1� jyj).

An immediate thing to wonder is whether we can mix importance sampling and strati�ed

sampling. This actually can be done in a very simple manner: pick a set of strati�ed canonical
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stratification
of w(x,y)

stratification of
lens area

Figure 5.7: 16 rays �red from all strata of pixel toward 16 strata on lens

.

Figure 5.8: All valid permutations of three uncorrelated strata

.
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samples (�

i

; �

j

) from the unit square, and transform them using the inverse distribution function.

We are actually sampling according to a di�erent probability function in each stratum, but we

can add the estimators as if they were identically distributed. This idea greatly simpli�es

implementing a stochastic ray tracing code.

The pixel area is not the only space that needs to be integrated over. If we add a camera

lens model, then we have a four dimensional integral. If we put a polar coordinate system on

the camera lens we have (for w with support of width 2):

P (x

i

; y

j

) =

1

A

lens

Z

1

x=�1

Z

1

y=�1

Z

2�

�=0

Z

R

lens

r=0

w(x; y)L(x; y; r; �)r sin � dr d� dx dy

To straightforwardly apply Monte Carlo integration we would generate four dimensional random

variables to generate primary estimators. Figure 5.6 shows a pixel sampling function w and lens

area each divided into 16 strata. This makes 16

2

= 256 strata in total, so 256 rays will be �red

in all. In the �gure, the sixteen rays that would come from one of the pixel stratum is shown.

All of the other strata on the pixel would also send this bundle of rays. As the dimension of

the integral grows larger (as it will once we add shadows and re
ection and motion blur), the

explosion of rays will increase, so the number of strata for each dimension must be cut to keep

the number of rays at a reasonable level. This problem was avoided by Cook using what he

called uncorrelated jittering[25]. In this method, we associate each stratum on the pixel with

a stratum on the lens, and make sure no stratum has more than one association. In this way,

one ray is �red through each stratum, as shown in Figure 5.7.

Cook uses the term uncorrelated because any consistent mapping between particular strata

will cause artifacts in the image. Instead we should use a di�erent mapping for each pixel.

Uncorrelated jittering is especially helpful when some of the dimensions of the integral are

constant. For example, if the surface seen from the pixel is in perfect focus (the same point is
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seen regardless of the point chosen on the lens), then we still get a full strati�cation of the pixel

space.

One problem with uncorrelated jittering is that the mathematics behind it has never been

investigated in the Computer Graphics literature. This lack of foundation can cause confusion

when trying to extend the technique. The basis for uncorrelated jittering can best be seen by

looking at a two dimensional example. Suppose we have the unit square divided into 9 equal

squares. As discussed earlier, we can get a primary estimator for an integral over the square by

evaluating an expression at a random point within the square. Another way to get a primary

estimator would be to choose one of the 9 squares at random and then choose a random point

within the square. We could extend this idea by selecting more than one square and taking

one sample from each square. This will still be an unbiased estimator as long as each square is

equally likely to be chosen in the long run. In two dimensional uncorrelated jittering, we would

choose 3 of the 9 squares, making sure that each square is the sole occupant of each row and

column. This will allow full strati�cation in both dimensions. All such sets of three squares are

shown in Figure 5.8. If we choose any one of these allowed sets of three squares at random, the

estimator will be unbiased because each square is a member of the same number of allowed sets.

One way to generate the sets is to permute the sequence (1; 2; 3) and use this as row numbers

and the unpermuted (1; 2; 3) as column numbers.

This basic idea of uncorrelated sampling is relatively unknown in the Monte Carlo literature.

It is brie
y mentioned as an untried possibility in the book by Kalos[63], but Computer Graphics

seems to be the only �eld in which it has been applied. The speci�cs of uncorrelated jittering

add some complexity to the basic idea; the two pixel dimensions (x and y) and the two lens

dimensions are each linked as a pair. Valid mappings between pixel strata (p

1

; p

2

; � � � ; p

N

)
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Figure 5.9: Rays traced in distributed ray tracing with four rays per pixel.

and lens strata (l

1

; l

2

; � � � ; l

N

) can still be found by permuting one of the sequences. Cook

actually used a more restrictive mapping method that avoided mappings that allowed too much

correlation

3

. This would avoid sample sets that had many rays in the same area of the pixel

going to the same area of the lens. This is no longer a strictly Monte Carlo procedure, but

can be justi�ed if every stratum gets `equal opportunity'. This technique of restricting the

acceptable random sets relates to traditional `quasi-random' methods.

One nice thing about uncorrelated jittering is that extra dimensions can be easily added.

For example, if a di�use re
ector is seen from a particular pixel, we'll want to do a light-

ing calculation. This will be in the form of an integral across each light source area. Using

3

It is not clear from Cook's presentation that his strategy yields an unbiased estimator.
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Equation 3.5 yields:

P (x

i

; y

j

) =

1

A

lens

Z

1

x=�1

Z

1

y=�1

Z

2�

�=0

Z

R

lens

r=0

Z

x

0

on light

w(x; y)g(x;x

0

)R(x�)I(x

0

) dr d� dx dy

Here x is the point seen by a particular ray from the lens and g(x;x

0

) is evaluated by sending

a shadow ray toward the light. I(x

0

) represents the lighting expression from Equation 3.5. The

rays traced for this situation are shown in Figure 5.9. If the object hit is not di�use then instead

of testing for shadow and shading, a re
ected ray is sent.

5.4.2 Kajiya's Path Tracing

Kajiya extended distributed ray tracing by phrasing the problem as a Monte Carlo solution to

an integral equation. Recall that the radiance at a point was written down in Equation 3.5,

which can be written without wavelength dependency as:

L

out

(x;  ) = L

e

(x;  ) +
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all x

0

g(x;x

0

)�(x;  ;  

0
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0

;  

0

) cos�
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0

kx

0

� xk

2

(5:10)

In Appendix B it is shown that for an equation of the form:

a(x) = b(x) +

Z

x

0

2


k(x; x

0

)a(x

0

)d�(x

0

) (5:11)

We can write down an unbiased primary estimator:

a(x) = b(x) +
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where f

n

(x

1

; � � � ; x

n

) is the probability density function for a sequence (x

1

; � � � ; x

n

). The series

can be terminated by waiting until we get a k with value zero (or accepting truncation error),

or by russian roulette, where it is terminated probabilistically[6]. Russian roulette eliminates

the bias of truncation.

To directly apply this series method to the rendering equation, we can view the space 
 as

x

?

, the set of all points on all surfaces. Once we have chosen a point on the pixel and lens,

then we want to know L(x

0

;  ), where x

0

is a point on the lens, and  is an incoming direction

determined by the thin lens rules. We trace a ray to �nd the �rst surface x

1

seen in direction

� . By the Ray Law (x

0

;  ) = L

out

(x;  ). Equation 5.10 gives an expression for L

out

(x;  ) in

the form of Equation 5.11. The function L

out

maps to a, L

e

maps to b, and the complicated

expression in the integrand (with L divided out) maps to k.

To get an estimator we just need to choose a series of points according to some distribu-

tions f

n

, and evaluate the series. For each series of n terms, we need to do (n� 1) evaluations

of the visibility term g for adjacent points. This is accomplished by tracing a ray between the

points and seeing if they are visible to each other. In practice, we should choose the points

carefully. Kajiya suggests eliminating zero terms by only using series that have visible adjacent

pairs. If we carry this idea farther by setting the probability functions to be proportional to

the k (automatically setting zero probability for zero terms) and allow truncation we get:

a(x) � b(x) +

K(x; x

1

)b(x

1
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K(x; x

1

)K(x

1
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2

)b(x
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where K(x

n�1

; x

n

) is the volume of k(x

n�1

; x

n

). Applying this to the rendering equation gives:
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Where x

n

is chosen by sending a ray from x

(n�1)

in direction � 

(n�1)

, and  

(n�1)

is chosen

with a density given by the SPF at x

n�1

given incoming direction  

(n�2)

. This sounds very

complicated, but in practice it's very simple. Starting on the lens, send a ray and �nd the point

hit. If the point emits any light, accumulate it. Re
ect the ray as if it were a real light ray

traveling `forward' (this is allowed because of the Helmholtz reciprocity condition), and �nd

the new surface hit. If this second point emits light accumulate its value times the re
ectivity

of the �rst surface. Send a new ray according the the SPF of the second surface and �nd the

third surface hit. If the third surface emits light, accumulate its value times the product of

the re
ectivities of the �rst two surfaces. The third surface sends a re
ected ray, and so on.

The process stops when the product of the re
ectivities falls below a certain value, or at an

arbitrary number of re
ections. Since the method traces light paths (in reverse) through the

room, Kajiya called it path tracing. An example of this process is shown in Figure 5.10, where

a room with uniform di�use re
ectivity 0.5, except for a glass ball and a light source with

radiance 8 and zero re
ectivity. The series is terminated when the accumulated re
ectivity falls
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0.0

0.0

0.5 x 8 = 4
0.125 x 8 = 1

Figure 5.10: Path tracing in a room with a glass ball, walls with re
ectivity 0.5, and a light

with radiance 8.

below 0.1 (4 bounces). In the four rays shown, two take four re
ections and contribute nothing.

Two others contribute 1 and 4. The estimate for radiance is the average of these, or 1.25.

The problem with this technique is that the variance will be very high unless the emitted

light is divided over a large area. Kajiya tried to lessen this problem by calculating the direct

lighting at each selected point. This is best thought of as recursively applying distributed ray

tracing. When a di�use surface is seen, a re
ection ray is sent in addition to the shadow ray. If

the re
ection ray directly hits a light source, the direct contribution is not included. If it hits

the light source after re
ection from a specular surface, then the contribution is counted. These

indirect contributions allow for e�ects like the bright spot under the glass ball in Figure 5.10.

Because these indirect terms are handled in the same way as those of crude path tracing, the

indirect lighting may have very high variance.

Kajiya's path tracing can be thought of as lazy evaluation of the global radiance function at

the lens; only those radiances at points contributing to the image are calculated. Unfortunately,
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many surfaces that are not seen will contribute their radiances indirectly, and the radiances of

these surfaces might be recalculated many times. Ward et al. suggested that once a radiance

value is calculated it should be saved in a geometric table for later use[119]. This type of storage

was implemented for di�use re
ectors, where the table needed no directional information. Ward

et al.'s technique is especially e�ective for di�use interre
ection. Like path tracing, it has fairly

high variance for e�ects like bright spots under glass balls.

5.4.3 Shadow Ray Optimization

One problem with traditional ray tracing methods is that shadow rays are sent toward every

light source[121, 25]. An example of why this is a problem would occur when ray tracing

an image of a street lit by one hundred streetlights. At any particular spot on the street,

we will send one hundred shadow rays in total, even though most of the lights make negligible

contributions. Kajiya noted that shadow rays could be sent in various numbers in a probabilistic

way, but did not propose a speci�c strategy. Shirley implemented a method where one shadow

ray is sent toward all light sources, and the contribution is either all or nothing depending on

whether the ray is obstructed[100].

The di�cult part of sending the shadow ray is constructing the probability space that

determines where the ray is sent. The �rst step is to choose the target light based on its

total contribution. This way more attention is paid to the most important lights (the nearby

streetlights in the earlier example). Then a point on the light source is chosen to send the

shadow ray toward. This should all be done using Cook's uncorrelated jittering, otherwise all

of the rays through a pixel could go to the same area on the same light. Given a set of canonical

random number pairs (�

1

; �

2

)

i

chosen in a strati�ed manner from the unit square, we choose
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Figure 5.11: Room with one shadow ray per viewing ray.

the target light by using just �

i

. Suppose we have two lights that contribute radiances of 1 and

9 at the target point. If �

1

< 0:1, then the �rst light will receive the shadow ray. Otherwise the

second will get it. If the �rst light receives the ray (�

1

< 0:1), then we know that (10�

1

; �

2

) are

a pair of canonical random numbers, and this pair is used to choose a spot on the target light.

This idea can be generalized to N lights by setting up N intervals for �

1

and dividing by the

width of the chosen interval.

Figure 5.11 shows a room lit with nine lights. Each of the 16 viewing rays produced only one

shadow ray. Figure 5.12 shows an art gallery lit by 5 spotlights with one shadow ray for each

of the sixteen viewing rays per pixel. Since the spotlights are very directional, most locations

send almost all shadow rays to one light. Both �gures have indirect lighting calculated by the

zonal techniques discussed in the next chapter.
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