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Dispersion is the spreading of refracted light into its

component colors or spectrum. A model of refraction

including dispersion is developed using the techniques of

distributed ray tracing. Two models of the rainbow, one

empirical or impressionistic, the other purely physical, are

developed using the results of the dispersion model. The

problem of representing the spectrum of monochromatic

colors using the rgb primaries of the graphics monitor is

addressed.
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11.. IINNTTRROODDUUCCTTIIOONN

Treatment of refraction in computer graphics has gen-

erally lacked dispersion, or the spreading of refracted light

into its component colors or spectrum. While convincing

simulations of transparent objects can be had without tak-

ing dispersion into account, the inclusion of dispersion

makes available additional realism and beauty. We will

present a dispersion model, within the ray tracing para-

digm, and develop a physical model of the rainbow based

on that dispersion model.

Modelling of dispersion entails the solution of at

least two distinct problems: the integration and reconstruc-

tion of the power spectrum of light by frequency, and the

display of the spectrum of monochromatic colors on a

standard graphics display device. The first problem may

be treated as another aspect of the distributed ray tracing

model of Cook4 et. al. or as an enhancement to the

rendering equation of Kajiya.11 The problem of reproduc-

ing monochromatic colors is in the realm of color sci-

ence27 and an approximate solution can be had through
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the use of metamers, though this problem remains an

open area of research.

Perhaps the most spectacular example of dispersion at

work in nature is the rainbow. The arc of the rainbow is

a result of the geometry of the reflection and refraction of

light in raindrops; the wonderful colors of the rainbow are

the result of dispersion of sunlight in refraction through

water. With a working dispersion model and some

geometric optics, one can produce an efficient rainbow

model for use in ray-raced and Z-buffered rendering

schemes. We will present two rainbow models, one

impressionistic or empirical8 and another purely physical

and therefore, quite true to nature.

22.. PPRROOBBLLEEMM SSTTAATTEEMMEENNTT

The Cook-Torrance3 shading model takes into account

the frequency of light waves in reflection from surfaces as

a function of the index of refraction. What has been

missing from the generally available literature is a model

of refraction which takes into account the frequency of

light. Such a dispersion model has been called for in

previous research.11,O13 Some dispersion models have

apparently been developed, but not published.9,O25 Tho-

mas23 published a brief description of a dispersion model,

but did not develop atmospheric rainbows; unfortunately,

Thomas’ article remains obscure. The work presented

here was developed independently of Thomas, and differs

in most important respects.

The model of dispersion developed here is an exten-

sion of distributed ray tracing24 and thereby uses the

Monte Carlo integration techniques of Cook.6 Integration

of a continuous function by a finite number of point sam-

ples can lead to two types of aliasing, that of the fre-

quency content of the signal being sampled and that intro-

duced in the reconstruction of the signal from the sam-

ples. It is important to note that we are not concerned

with the former type of aliasing, which is the result of

sampling the signal at a rate below the Nyquist limit.

Color metamerism generally obviates the need for very

accurate reproduction of the exact curve of the power

spectrum; nuances of the power distribution are important

only in the interaction of light with attenuating media and

reflecting surfaces and can safely be ignored in our
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model. What iiss important is our reconstruction of the

spectrum from the point samples taken. As our approxi-

mation of the integral of the power spectrum will be a

set of discrete samples, our reconstruction will be prone

to appearing as a set of discrete, overlapping colors. This

situation is analogous to that of temporal aliasing, where

a moving ball may be sampled (imaged) at several points

in time in an attempt to get motion blur and, upon recon-

struction, appear as several overlapping, translucent circles.

In the case of dispersion, if we were to view a white

disk on a black background through a prism, we might

see several overlapping disks of different colors. We call

this effect spectral aliasing, and use the jittering technique

of stochastic sampling to defeat it. Jittering is random

placement of the actual sample points within fixed sample

intervals, which intervals may themselves be regularly

spaced. Jittering adds noise to the image and turns the

distinct overlapping images into a speckled blur, which

looks a bit like spray paint.

The advantage of this noisy reconstruction of the

image is that the human visual system tends to blur the

noise together into a smooth continuum, whereas it actu-

ally enhances the sharp edges in the non-noisy images for

a most displeasing effect. Such sharp discontinuities in

intensity or color, or the rate of change thereof, manifest

the phenomenon known as Mach banding. Mach bands

are an artifact of the edge-enhancement caused by lateral

inhibition in the retina.7 When constructing and sampling

our representation of the spectrum we must be aware of

the potential for trouble with color Mach banding. The

practical significance of this problem will be addressed in

section 4.1.

Whatever colors we choose for representation, we

will fail to accurately reproduce the spectrum. The graph-

ics monitor has three primary colors with which to work,

none of which is fully saturated. Even if we have three

fully saturated or monochromatic primaries (as are avail-

able with laser raster projection systems), all other mono-

chromatic colors can only be approximated, with varying

degrees of desaturation. Our task, then, is to represent

the entire visible spectrum of monochromatic colors as

best we can, using three desaturated primaries and avoid-

ing Mach bands. Furthermore, the sum of the samples
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chosen to represent the spectrum must, at full intensity, be

the value of full-intensity white. If not, image samples

involving dispersion will be tinted and/or shifted in inten-

sity.

Given a working model of dispersion and an accept-

able representation of the spectrum, one looks for applica-

tions. One striking application is a physical model of the

rainbow. Rainbows are the result of the interaction of

sunlight with very large numbers of raindrops in the

atmosphere. The sheer number of particles (raindrops)

involved, multiplied by the number of samples required to

integrate the spectrum, makes a direct simulation of nature

quite impractical. By modelling of the interaction of light

with a single ideal raindrop, we can acquire a table of

data which represents the situation in nature. This table

may be used subsequently in the rendering process to

replicate the effects of a rainbow in nature, with very

good computational efficiency. We will describe such an

approach in Section 4.3.

33.. PPRREEVVIIOOUUSS WWOORRKK

33..11.. PPhhyyssiiccss ooff RReeffrraaccttiioonn

Refraction is an effect of the differing speed of light

in dissimilar materials. The speed of light in a material

determines its optical density which, surprisingly, is not

exactly proportional to its mass density. As light slows

down upon entering a medium of greater optical density,

the wave trains are compressed. Thus, while frequency is

preserved, wavelength is not. (It thereby behooves one to

be careful nnoott to use "frequency" and "wavelength" inter-

changeably when discussing refraction and dispersion.)

The angle of refraction, or the angle of the change

in path for light, was related mathematically to the net

change in index of refraction by Willebrord Snell in 1621

by Snell’s Law:1,O19

η1OsinθiO = η2OsinθtO (1)

where η1 and η2 are the indices of refraction of the two

transmissive media, θiO is the angle of incidence and θtO is

the angle of transmission. As the refractive index η is a

function of the frequency of the light ray, the angle of

refraction is also a function of frequency. Thus arises

dispersion.
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33..22.. PPhhyyssiiccss ooff DDiissppeerrssiioonn

The proportion of change of index of refraction with

frequency in a material is termed dispersive power. The

dispersive power wO of a material is defined as the ratio

of the dispersion between the F and C Fraunhofer lines*

to the mean deviation, i.e., the deviation for the D

Fraunhofer line.20,O21,O26 Thus

wO = (ηDO−1)
(ηFO−ηCO)_________ (2)

where ηFO, ηCO, and ηDO are the refractive indices of the

material at the frequencies of the F, C, and D Fraunhofer

lines, respectively.

Just as optical density is independent of mass den-

sity, dispersive power is independent of optical density.

The reason is that dispersion is modulated by absorption

bands in materials, not by optical density.

Figure 3.1 The dispersion curve at an absorption band.

Note also that the plot of refractive index vs. frequency is

not perfectly straight, but curved. This is an important

factor in the development of a model of dispersion.

There have been many attempts to formulate a quan-

titative relation of refractive index η to frequency or

wavelength λ, none entirely successful. The best known

and most general is that of Sellmeier:1

η2 = 1O+OΣ cO2O−Oλ2
bOλ2_______ (3)

where bO is a constant characteristic of the material, cO is
_______________

* The Fraunhofer lines are emission lines of hydrogen. They represent monochromatic light at

various visible wavelengths: the C line is at 656.3 nm (red), D is at 589.3 nm (yellow), and F is at

486.1 nm (violet).
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an idealized absorption wavelength of the material

(corresponding to a spectral absorption band) where the

index of refraction is infinite, and the summation is over

all absorption bands in the material. Simpler equations

which are suitable for limited extents within the spectrum

are:1

η = λ0
a___ O+O λ2

b___ O+O λ4
c___ O+O . . . (Cauchy)

η = 1O+O (cOO−Oλ)
b_______ (Hartmann)

η = aOO+O λ
b__ O+O

λ 2
7__

c____ (Conrady)

η = aOO+ObOλ2O+OcLOO+OdLO2 (Hertzberger)

where LO = (λ2O−O0.028)−1, and aO, bO, cO, and dO are con-

stants. These equations are all nonlinear, and values of

the constants for various materials are not easily found in

the literature. This will be a consideration in our

development of a dispersion model.

33..33.. RRaaiinnbboowwss

Rene Descartes worked out the first scientifically

accurate model of the rainbow in 1637.10,O14 To do this,

he assumed the raindrops to be spherical and traced rays

through a circular, two dimensional representation - proof

that ray tracing is hardly a new technique! Descartes’

simulation is illustrated in Figure 3.2.

With his simulation, Descartes was able to accurately

explain the angular size and position of the primary rain-

bow arc and some of the supernumerary arcs. (The

supernumerary arcs which sometimes appear immediately

inside of the primary rainbow arc are due to diffraction

effects arising from the wave nature of light, and thus

cannot be modelled using the geometric optics of a parti-

cle transport ray tracing paradigm. For more on this

topic, see Nussenzvieg.17 ) Interestingly, an explanation

for the color in the rainbow had to await Newton’s

discovery of dispersion some decades later. Aside from

the supernumerary arcs inside the primary rainbow arc,

Descartes’ raindrop remains an accurate and sufficient

model of the rainbow.

To recreate Descartes’ simulation, we trace rays into

the raindrop from the optical axis (ray 1 in Figure 3.2) to
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Figure 3.2 Descartes’ raindrop.

the edge of the circle. This corresponds to a range of

zero to one for the impact parameter; the value of this

impact parameter uniquely determines the path of the ray

through the raindrop. Upon impinging the the raindrop,

the ray is refracted, reflected once for the primary arc or

twice for the secondary arc, and refracted again upon exit-

ing the drop. Arcs formed by higher-order internal reflec-

tions are deemed unimportant as they are too dim and/or

appear close to the sun in the sky, and are therefore not

visible.

Note that all rays with an impact parameter greater

than or less than that of ray 7 in Figure 3.2, the Des-

cartes ray, emerge at an angle closer to the optical axis

than that ray. Thus the Descartes ray marks a point of

inflection in the change of emergence angle with impact

parameter, and there is a concentration of light energy

being returned at this angle, which is approximately 42
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degrees. This gives us a bright feature 42 degrees from

the optical axis; it is dispersion which spreads the bright

feature into the spectrum of colors. Note also that the

fact that all rays which are reflected exactly once inside

the raindrop emerge at 42 degrees or less, makes the sky

appear lighter inside of the primary arc of the rainbow.

Rays reflected exactly twice inside the raindrop emerge

with a peak power at approximately 52 degrees, with the

excess light emerging at greater angles. Thus the secon-

dary arc appears at about 52 degrees; between the two

arcs is a zone of darkness known as Alexander’s band.

* The extinction coefficient is a physical quantity specific to each
material22 which varies with frequency. The specific values of this
coefficient are often unknown for a given material, and it is generally
set to 0, for the purposes of computer graphics lighting models.

To perform an accurate simulation of energy transfer

in Descartes’ raindrop, the Fresnel equation should be

used to modulate the quantities of reflected and refracted

energy. With an extinction coefficient* of 0, the Fresnel

equation for reflection can be written:2

rpaO = η2cosθiOO+Oη1cosθtO
η2cosθiOO−Oη1cosθtO________________ (4)

rpeO = η1cosθiOO+Oη2cosθtO
η1cosθiOO−Oη2cosθtO________________ (5)

RO = 2
rpaOOO2 O+OrpeOOO2________ (6)

where rpaO is the reflection coefficient for the component

of light which is polarized parallel to the surface, rpeO is

the reflection coefficient for the component polarized per-

pendicular to the surface, η1 and η2 are the refractive

indices of the two materials, θiO is the angle of incidence,

θtO is the angle of refraction, and RO is the total reflec-

tivity. Light not reflected is refracted in quantity 1O−ORO.
The rainbow phenomenon exists as a cone in space

which is unique for each point of view (and indeed for

each eye of the individual observer); Figure 3.3 is

intended to illuminate this. Inspect it carefully for the

following argument. Since the geometry of reflection and

refraction as discussed above gives us a spectrum appear-

ing at an angle the same as that of the Descartes ray

from the straight back direction to the light source, we

would expect to see that spectrum in all (sunlit) raindrops

viewed from that angle. The sun’s rays can be assumed



9

Figure 3.3 The cone of a rainbow.

to be parallel, thus this effect appears to the observer as a

circle of angular radius 42 degrees, since the observer is,

by definition, at the apex of the cone. Naturally occur-

ring rainbows actually constitute a cone of half-angle 42

degrees around the antisolar point and have an angular

width of approximately 2 degrees. The secondary arc

appears at a half-angle of 52 degrees.

33..44.. CCoommppuutteerr GGrraapphhiiccss

As mentioned above, the Cook-Torrance shading

model relates reflection to index of refraction and fre-

quency through the Fresnel equation.22 A model of refrac-

tion relating index of refraction to frequency has been

developed by Thomas23 and more recently by the

author;15,O16 that work is extended here to include a physi-

cal model of the rainbow.

The problem of integration and reconstruction using

point samples has been addressed by Cook6 in his discus-

sion of the distributed ray tracing model.4 The dispersion

model developed by the author is a straightforward appli-

cation of Cook’s techniques, as an extension to the reper-

toire of effects available through distributed ray tracing.

A model of atmospheric rainbows has been alluded

to in the literature,5 but not presented in detail. A physi-

cal model of the rainbow requires a fair amount of

development work. Fortunately, the development work

being done, the results are easy to include as an added

feature in a rendering program.
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44.. SSOOLLUUTTIIOONN

44..11.. SSaammpplliinngg iinn tthhee FFrreeqquueennccyy DDoommaaiinn ooff LLiigghhtt

To model dispersion, we must integrate the power

spectrum of light at each sample point in the image

where there occurs dispersive refraction, such as on the

surface of a glass prism. The integral of the power spec-

trum can be expressed

ITO = 
380
∫

800

IO(λ) dOλ (7)

where ITO is the total illuminance at the given point in

space and IO(λ) is the illuminance at wavelength λ at that

point. As we need only integrate the power spectrum of

transmitted light at dispersive surfaces, since only

transmitted or refracted light is dispersed, the integral we

are interested in can be stated

ItO = 
380
∫

800

TO(λ) dOλ (8)

where ItO is now the illuminance by transmitted light at a

point in space on the boundary of a change in refractive

index, and TO(λ) is the illuminance by the transmitted light

at wavelength λ.

As previously stated, we will approximate this

integral using a set of point samples. We perform sto-

chastic antialiasing of our integral by jittering6 the sam-

ples. If a sample PfOO at frequency λ represents the power

in the spectrum over an interval of width ∆PfOO, the jittering

consists of adding a random offset ∆PfOOO(XOO−O1/2) where XO
is a random variable of uniform distribution in the range

[0..1]. The net effect is to randomly place the sample PfOO
somewhere within the interval λO−O∆PfOO/2 to λO+O∆PfOO/2.

The fact that we take point samples in the frequency

continuum of light implies that we are also taking point

samples of the continuum of the dispersion curve, as

index of refraction is a function of frequency. Thus we

face the choice of whether to jitter the frequency (and

therefore the color) of the rays or the refractive index of

the material, or both. Given that the the jittered sample

at frequency PfOO needs to be translated into RO(PfOO), the value

of the refractive index function RO at PfOO, we will prefer to

jitter a linear function RO over a nonlinear function for

reasons of computational efficiency, as linear interpolation



11

is in general quicker to evaluate than nonlinear interpola-

tion.

This may motivate us to contrive piecewise linear

approximations to the spectrum and the dispersion curve.

It is unlikely that the viewer of the final image will be

able to discriminate between a physically accurate non-

linear model and a computationally efficient linear approx-

imation; furthermore, since the dispersion curve is specific

to a given material, to be true to nature one would need

to tabulate data for every distinct material to be rendered.

We therefore employ a (one-piece) linear approximation to

the dispersion curve for our rendering dispersion model.

The refractive index and dispersive power for sur-

faces can be input parameters. Thus one can specify a

polygon with an associated refractive index of, for exam-

ple, 4.2 and a dispersive power of perhaps 0.5, both of

which are outlandish in terms of the "real" world, but

viable within our model. It is interesting to create situa-

tions and materials which cannot exist in our everyday

experience; this is part of the power of computer graphics.

The issue of which quantity to jitter, refractive index

or color, or both, should be evaluated in the light of

computational efficiency. The reason for jittering samples

is to avoid spectral aliasing, however, it has been our

experience that spectral aliasing is not a significant prob-

lem in any but deliberately pathological scenes. That is,

the distinct overlapping images of different colors are sim-

ply not readily visible unless the dispersive power is

unrealistically high. When jittering is deemed desirable,

we jitter the frequency of the ray and derive, in a pre-

rendering operation, a constant csO for each refractive sur-

face sO in the scene:

csO = 0.76
wO(ηO−O1) − η____________ (9)

where wO is the dispersive power, η is the refractive index

at the far red end of the spectrum, 0.76 is the proportion

of the spectrum that lies between the C and F Fraunhofer

lines. This constant csO when multiplied by the the fre-

quency of a sample gives the refractive index at that fre-

quency, for use in calculations of propagation of refracted

light. (Note that this assumes that frequency is specified

in the range [0..1].) Thus the cost of jittering is reduced

to one floating point multiplication per surface
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encountered, plus the negligible preprocessing cost of

evaluating csO for each relevant object in the scene and the

cost of interpolating the color of the final sample.

44..22.. RReepprreesseennttiinngg tthhee SSppeeccttrruumm

To reproduce the spectrum, we must simulate the

entire gamut of monochromatic colors using only the three

desaturated primaries of the graphics monitor. Further-

more, the integral of each of the red, green, and blue

curves of our simulated spectrum must be unity, or the

reconstruction of an image from our samples will be

tinted, darkened, or overdriven. We refer to this as the

summing to white criterion.

As we work within the rgb color space, we should

restate equation (9) in terms of the rgb vectors:

ItRO = 
380
∫

800

RO(λ)OTO(λ) dOλ (10)

ItGO = 
380
∫

800

GO(λ)OTO(λ) dOλ (11)

ItBO = 
380
∫

800

BO(λ)OTO(λ) dOλ (12)

where RO(λ), GO(λ), and BO(λ) are the values of the R, G,

and B tristimulus functions for the metameric color used

to represent the color of monochromatic light of

wavelength λ. When sampling at a particular frequency

then, we are actually taking three (red, green, and blue)

samples of TO(λ). The distribution of the samples should

be tailored to the shape of the tristimulus curves used in

the representation of the spectrum, with care taken to

assure that

iO=1Σn RO(λiO) = 
iO=1Σn GO(λiO) = 

iO=1Σn BO(λiO) (13)

where λiO is the wavelength of the iOthO sample, and RO(λiO),
GO(λiO), and BO(λiO) are the red, green, and blue values,

respectively, of sample λiO. This equality is necessary in

order to have the samples (at their maximum intensity

values) sum to white in the rgb color space of the graph-

ics monitor.
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44..22..11.. LLiinneeaarr SSppeeccttrruumm MMooddeell

A simple representation of the spectrum, given these

constraints, is shown in Figure 4.1.

Figure 4.1. The rgb curves of the linear spectral representation.

This model has the advantage of being piecewise linear,

for fast interpolation of color, and it provides a reasonably

good perceptual representation of the spectrum. It has the

disadvantage of using a significant portion of the power

available to the red primary, in the approximation of

violet with magenta. Violet is of higher frequency than

is available with an rgb monitor and therefore cannot be

directly reproduced; magenta is a visually acceptable sub-

stitute. A problem with the magenta representation of

violet is that edges which are blurred by dispersion such

that they should appear with the color sequence yellow-

orange-red-black, actually appear greenish-yellow-red-black.

This is because in a white-to-black transition of this sort,

the first color to be subtracted out from the sum is violet.

When violet is represented as a sum of equal quantities of

red and blue, the subtraction of violet leaves a surplus of

green. This is a subtle effect, and escapes the notice of

most viewers.

Another potential drawback of this representation of

the spectrum is the pronounced discontinuities in the first

derivative of the rgb curves. While this has the potential
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for causing color mach banding, such an effect has only

been observed in deliberately pathological scenes. Yet

another problem found is that the red band in the spec-

trum appears too narrow, again because some of the red

energy is used to display violet. The final problem is

that the rolloff of red and violet to black is too steep and

short; the entire curve bears no resemblance to the

response curve of the human visual system.

Despite the above drawbacks, we have found this to

be a viable representation of the visible spectrum.

We sample the representation of the spectrum at 13

intervals centered on the vertical lines in Figure 4.1. This

provides a good basis for reconstruction of the spectrum

and preserves the summing to white property. However,

when jittering we encounter the problem that the samples

may longer sum to white. The noise added by uncorre-

lated jittering of the 13 samples will generally skew the

sum; in practice this appears as a faint colorful noise,

faint enough to not be objectionable or even usually

noticeable. (This problem could be defeated by correlat-

ing the jittering of the 13 samples, but this is computa-

tionally expensive.) Furthermore, about half the time the

sum of jittered samples of a full intensity white point will

exceed unity. If the sum is not clamped to unity at the

high end, overflow will occur and the color of the

summed samples is likely to wrap around to black. This

problem is defeated by clamping the sum, at minimal

computational cost.

44..22..22.. EEmmppiirriiccaall SSppeeccttrruumm MMooddeell

A more rigorous approach to the construction of the

representation of the spectrum is currently under develop-

ment. This approach involves taking the xyz coordinates

of the monochromatic spectral colors and performing the

appropriate linear transformation into rgb values. Con-

struction of the transformation matrix requires information

about the chromaticity coordinates of the specific monitor

on which the spectrum is to be displayed.19 We use as

input the xyz coordinates of monochromatic colors

weighted by the spectral radiant power distribution of the

CIE standard illuminant B, which is designed to emulate

direct sunlight (the light source for rainbows). The fol-

lowing graphs are piecewise linear between samples taken
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at 10nm (nanometer) intervals from 380 to 770 nm.27

Figure 4.2. The rgb curves of the empirical spectral representation.

Figure 4.3. Summed rgb values, with and without negative values.

As our rgb primaries are not fully saturated, we

expect that at all points in the spectrum at least one of

the rgb values will be negative. This is indeed what we

see in the curves of Figure 4.2. The sum of these
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curves, with negative values included and with negative

values clamped to zero, are shown in Figure 4.3. A

more accurate approximation to the spectrum, without

negative values, could be attained be limiting the xyz

input values to the color gamut of the monitor.

Note that the curves in Figure 4.3 have a local

minimum in the cyan area of the spectrum. These curves

do not give an acceptable representation of the spectrum

on a monitor calibrated for perceptually linear contrast

response; the cyan and yellow colors appear far too dark.

When adjusted with a gamma correction of 2.5 to 3.0,

however, the zero-clamped curve gives a good representa-

tion of the spectrum. Note also that the area under the

zero clamped curves should be normalized to meet the

summing to white requirement.

44..33.. RRaaiinnbbooww MMooddeellss

44..33..11.. IImmpprreessssiioonniissttiicc RRaaiinnbbooww MMooddeell

We have developed two models of the rainbow, one

very simple and impressionistic or empirical, the other

comparatively complex and purely physical. The former

model entails using the 13 colors of our samples of the

linear spectrum model to create 13 different colors of fog

which compose a rainbow. The fog function is simply an

asymptotic replacement of some percentage rO of the color

value computed at the end of the ray, with the color

value of the fog, based on the distance that the ray has

traveled:

rO = eOhdO/tO (14)

where hO is a constant, dO is the distance, and tO is the

transmittance constant; note that tO has red, green, and

blue components, usually equal. As that distance goes to

infinity, the percentage of replacement goes to 100. The

13 colored fogs are invoked in concentric rings (cones,

actually) around the antisolar vector, e.g., the vector from

the light source to the eye point. This vector corresponds

to the ray from the observer to the antisolar point in Fig-

ure 3.3. Each ring is a band of some angular width, at

some angular offset from the antisolar vector. We con-

struct the rainbow by taking the dot product of each ray

traced, with the antisolar vector; this dot product gives us

the cosine of the angle between the two vectors. This
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cosine is then used as an index into a table of the 13

colored fogs. The indexing function can be parameterized

to vary the width and angular placement of the rainbow.

The following C code segment implements this parameter-

ized rainbow:

index = ( DOT(ray−direction, antisolar−ray)
− rainbow−angle) * rainbow−width;

ifiiff (jitter−option)
index += jitter(delta);

ifiiff ((index >= 0) && (index < FREQUENCIES))
Fog = Rainbow[(iinntt)index];

eellssee Fog = NULL;

where "ray_direction" and "antisolar_ray" are vectors,
"Fog" and "Rainbow[]" are pointers to structures for the
"fog" type, and the other variables are floating point type.
The constant "FREQUENCIES" is equal to 13; the func-
tion call "jitter(delta)" returns a random value of uniform
distribution in the range [-delta/2..delta/2].

The jitter option turns a rainbow composed of con-
centric bands of color to a more attractive "fuzzy" rain-
bow. This jittered rainbow can look fairly realistic, par-
ticularly when supersampling is employed to soften the
noise introduced by the jittering. Note that this scheme
only jitters the index to the table of colored fogs, and not
the color of the fog itself; an improvement would be to
add such color jittering.

44..33..22.. PPhhyyssiiccaall RRaaiinnbbooww MMooddeell

The above approach is ad hoc and is not really
based on a dispersion model, but it uses the spectral
representation of our dispersion scheme. A more rigorous
and complex approach, yielding a more realistic result, is
to recreate Descartes’ simulation using dispersion. We
will have to integrate Descartes’ raindrop over the visible
frequencies of light; this entails ray tracing Descartes’
raindrop at a variety of frequencies and summing the
results. Clearly it is inefficient to ray trace Descartes’
raindrop for every ray spawned in the process of render-
ing a scene; fortunately we can do much better than this.
We need only perform the integration over frequency of
Descartes’ raindrop once, in a preprocessing step, to build
a table of fogs similar to that used in the our simpler
rainbow model. This table will need to have a relatively
large number of entries, as a real rainbow is an illumina-
tion effect that covers most of the sky, though mostly to
a very subtle degree. Thus we have entries for a large
number of angular displacements, over a 180 degree
range. (In practice, no fog might be required in the 10
degree interval of Alexander’s band, as no light is
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returned there by refraction.)

The first step in implementation of the physical
model is to generate an algorithm for ray tracing Des-
cartes’ raindrop. This means calculating the angle of
emergence and energy attenuation factor for rays which
are reflected once and twice inside the raindrop, as a
function of the impact parameter. The angle of emer-
gence of a given ray is determined by the geometric
optics of reflection and refraction in a sphere, while the
energy transfer is determined by the physics of reflection
and refraction of light as it interacts with air/water boun-
daries.

The geometric optics of Descartes’ raindrop are illus-
trated in Figure 4.4.

Figure 4.4 The geometric optics of Descartes’ raindrop.

Note that we can take advantage of the equality of angles
θ1 and θ2. Once this geometry is established, it is
straightforward to program an algorithm to trace the
required rays.
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For the purposes of computer graphics, we are gen-
erally not concerned with the polarization of light, and
generalizations of the Fresnel equation for non-polarized
light are usually employed. For this simulation, however,
we are more interested in physical veracity than computa-
tional efficiency, so we choose the formulation of the
equation as it appears in equations 4, 5, and 6. Note that
the orientation of polarization to the surface is preserved
through reflections and refractions in a spherical raindrop.

Also in the interest of physical accuracy, we use a
nonlinear approximation of the dispersion curve of water
in our rainbow simulation. Using actual measurements of
the refractive index of water at various frequencies12 we
derive constants aO and bO of Cauchy’s equation for refrac-
tive index, getting aO = 1.3239 and bO = 3116.3. The first
two elements of the Cauchy series

η = λ0
a___ OO+OO λ2

b___ = aOOO+OO λ2
b___ (15)

give a good approximation to the dispersion curve of
water with the derived values of aO and bO: over the
wavelength range from 405 to 670 nanometers, the calcu-
lated values of η agree with measured values to within
plus or minus 0.0001, or 0.8 of one percent. We use a
refractive index of 1.0003 for air.

Our first implementation of the physical rainbow
model uses samples taken at 13 fixed, evenly spaced fre-
quencies or wavelengths. (We relax our rigor in the use
of "frequency" and "wavelength" here, as the visible spec-
trum is usually specified by wavelengths of light in a
vacuum.) We trace 50,000 rays per wavelength, over the
range of impact parameters. For each wavelength sam-
pled, the intensities of the emerging rays are summed by
angle of emergence in a linear array of 1800 buckets.
The intensities in each bucket are then multiplied by the
rgb vector of the representative color for that wavelength
and added to buckets of a similar array of rgb intensities
by angle. After all wavelengths have been sampled, the
results in the rgb array are normalized and inverted for
use in the fog function. Unlike the ad hoc rainbow
model, the fogs used are not themselves colored, but
rather their transmittances, tO in equation (14), are unequal
in red, green, and blue. Thus the fogs have no intrinsic
color, but red, green, and blue values at ray endpoints are
replaced at independent rates per unit distance. This
prevents unnecessary filtering by attenuation of colors
behind the rainbow.

Our first approach evidences significant spectral alias-
ing. Spectral aliasing is accentuated in the rainbow
model, as the bright feature at the Descartes ray is quite
narrow and pronounced for a point light source, resulting
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in thin concentric rings of color in the rainbow. The
rings are more widely spaced and therefore more evident
in the violet end of the spectrum, as the dispersion curve
is steeper at shorter wavelengths.

A second implementation employs spectral antialias-
ing. Again we sample at 13 distinct frequency intervals,
but we jitter the samples within the intervals. This
approach requires that we multiply the intensity of the ray
by the interpolated rgb value for its specific frequency,
and store that vector in the rgb array immediately, rather
than using an intermediate storage array, as the colors of
individual rays will vary. This has the effect of blurring
and merging the rings produced by discrete sampling.

Again, the process described above yields the rainbow
produced by a point light source, thus the rings of color
produced by spectral aliasing are quite narrow and dis-
tinct. In nature rainbows are produced by the sun, which
has an angular diameter of approximately one half of one
degree. Convolution of the final rgb tables with a (one
dimensional) kernel which represents the disk of the sun
spreads each of the rings over one half a degree of angle.
The kernel we use is five entries wide, corresponding to
the fact that our fog samples are taken at 1/10thO degree
intervals. Since the entire angular width of the rainbow
is approximately two degrees, this blurs the rings together
well enough to provide very good spectral antialiasing. If
the area under the curve of the semicircular kernel is nor-
malized, there will be no net change in the density of the
fog tables after the convolution.

We employ another feature of our rainbow models.
In nature, rainbows are rarely perfect arcs, in fact one
most often sees only a portion of the full rainbow arc.
Rainbows are modulated by two factors: shadows of the
clouds from which the rain is falling, and the distribution
of the falling rain itself. In an effort to make our rain-
bows look more natural, we modulate intensity of the
rainbow with Perlin’s18 "Chaos()" texture. This is a solid
or procedural texture which takes a vector as input and
returns a stochastic scalar quantity with a 1/PfOO2 power
spectrum. The vector we pass to the texture is the ray
direction; we use the scalar value returned to modulate the
transmittance of the rainbow fogs. The frequency content
of the Chaos() function can be parameterized for varying
effects, and the texture can be scaled on a vertical or
slanted axis to simulate sheets of falling rain.

55.. CCOONNCCLLUUSSIIOONN

A model of dispersive refraction within the distri-
buted ray tracing paradigm has been implemented, with
good subjective results. The problem of representing the
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spectrum of monochromatic colors within the rgb color
space has been addressed, but not solved to final satisfac-
tion; further work is called for here.

Physical and empirical/impressionistic models of the
rainbow have been developed, using the above results. In
contrast to the dispersion model, the rainbow models are
relatively efficient to render, because of their table-lookup
implementation. The rainbow models are suitable for Z-
buffer rendering schemes, as well as ray tracing.
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