
Latour - 1

Experiments in Hypermedia Support for the
"Understanding for Reuse" Problem

Larry Latour

University of Maine
Department of Computer Science

222 Neville Hall
Orono, Maine, 04469
Tel: (207) 581-3523

Email: larry@gandalf.umcs.maine.edu
Fax: (207) 581-1604

Abstract

Generic architecture schemas, documentation schemas that capture all aspects of the development of system
families, are complex, multi-view structures that require hypermedia support in order to be complete with
respect to a domain specific toolkit [6]. We have experimented with hypermedia representations of integrated
Ada component libraries, and have recently been exploring the use of hypermedia tools in university courses
such as operating systems, database management systems, and software engineering. We've noted a number of
parallels between the university learning environment and a generic architecture development environment.
While they are different in many ways, in both cases the issue of separating view-dependent information from
underlying "raw material" is an important one. We hint at some of our experiments in this position paper.

Keywords: hypermedia, generic architecture, view independence, software engineering databases

Workshop Goals: to discuss aspects of generic software architectures that will provide insight into the
construction of hypermedia webs.

Workshop Groups: domain specific software architectures, domain specific toolkits, generic code
architectures, formal methods.

Latour - 2
1 Background

It has long been obvious (to most of us, I hope) that a software system is more than just code. Indeed, code is just
one small part of an overall documentation schema that IS the system [11]. Extended to system families, code for
a specific system should be thought of as a generic code architecture instantiated within the context of a particular
environment [The 3Cs: 5,8,14]. This generic code architecture in turn is one small part of the documentation
schema for a system family, recently being referred to with the buzzphrase domain specific software architecture
[15]. This documentation schema is augmented with a wide variety of support tools to provide developers with
domain specific toolkits [6]. In order for a development team to successfully build a system, they need to properly
construct, assimilate and apply the knowledge of one of these generic documentation schemas. This IS the
problem, not the reuse of code components.

At the University of Maine we have been looking at various aspects of this problem. Specifically, we dealt with
the construction of generic code architectures in [9], using the 3C model as a guideline for organizing collections
of interconnected code components, and we have experimented with hypermedia support for integrated
component libraries in [7]. Recently I have been involved in three projects that I consider to be closely related.
The first concerns multi-media systems and applications, and the development of a multi-media minor on the
University campus. The second concerns the use of "non-linear" classroom/lab support tools in my computer
science department courses, and the third concerns the further development of hypermedia based software
engineering databases to support the construction and understanding of complex documentation schemas. It is the
latter project that concerns us here, but the first two projects have provided me with a good deal of insight into the
problems inheritent in a project such as this. I describe some of my experiences in my position.

2 Position

2.1 Hypermedia Support for Operating Systems

After (somewhat) successfully using the results of my hypermedia experiments with integrated Ada software
component libraries in my graduate software engineering class, I decided to extend these experiments into the
domains of operating systems and database management systems. My operating systems experiments were
motivated by the use of Andrew Tanenbaum's Minix Operating System [13], the complete C source code of which
is provided to the student, accompanied by a poorly written textbook as the only source of documentation. The
DBMS experiments were less extensive but were motivated by a more reuse related project, Don Batory's
GENESIS configurable database system composer [2]. In both cases the courses were "architecture driven". That
is, both operating systems and DBMS syllabi revolved around the generic properties of their respective subsystem
components. A number of interesting lessons learned accompanied the development of hypercard-based stacks
for these courses. After describing a few interesting pieces of my "documentation webs", I will discuss a few
lessons learned that seem to apply equally well to hypermedia-based reuse environments.

My first example is how user processes interact with the kernel during interrupt handling. It's interesting that long
after developing these stacks I recalled similar experiments by Ted Biggerstaff while he was with MCC,
developing hypermedia system software support specifically as an aid to reusability [3]. The essence of this
particular set of cards is to take the student through the interrupt handling process step-by-step, stopping along the
way to visit a number of interesting side issues (or parallelling major issues!). Slicing two cards from the middle
of this set doesn't truly demonstrate the usefulness of such a tool in class (or in reuse understanding), but with a
bit of imagination the reader

Latour - 3

should be able to envision where we came from to get to the card, and where we're going when we finish.

In figure 1, process A has made a fork system call, which was translated to a software interrupt, subsequently
invoking the assembler handler s_call. After saving the state of the processor in the process table, s_call then
invokes the C procedure sys_call, which adjusts the process table blocked and ready lists and handles message
transmission. This is currently the state of figure 1. Subsequently s_call regains control of the processor, and a
new process is loaded and started.

Figure 1: Process Interaction with the Kernel

The diagram above serves two purposes. First, it gives the user information about what is happening at this
specific moment in the interrupt handling process. But, more interestingly, it provides a current framework, or
view, by which the student can gain more information about any of the visible objects on the screen. It is, in a
sense, a graphical query language. The user can, for example, click on the general model button (the up-arrow on
the right), transitioning to the general interrupt handling model of figure 2, corresponding to this step in the fork
system call.

Latour - 4

Figure 2: General Interrupt Interaction with the Kernel

Note that the source of the general interrupt is defined only as "Hardware Interrupt", and the description of this
stage in the interrupt handling process should apply equally well to any interrupt handler.

Referring again to figure 1, every visible object has meaning and can be interrogated by the user. This is an
important issue in hypermedia systems. For example, click on the processor object and a description of the
processor architecture is made visible. Similarly one can explore the structure of the process table, the design of
the s_call and sys_call interrupt handling procedures, the library procedures, and information regarding both the
process sending a fork system call and the server process within the Minix system proper that receives and
processes the system call.

A second, related example, is the protocol in which the fork system call, together with related calls wait, exec, and
exit, is used in an application program (most commonly in the implementation of a typical Unix shell). Figure 3
presents one step in the interaction between a parent and child process after the child has been created with a fork
system call.

Latour - 5

Figure 3: Protocol of System Call Usage

Note that the double click request indicates a degree of animation, essentially focusing on the transformations
between each step in the protocol between parent and child. Again, as with the interrupt handler view, all visible
items on the screen can be interrogated. An interesting note here is that this view can be arrived at from a number
of sources, one indirectly being the view of interrupt handling in figures 1 and 2. The return button is context
sensitive in that regard.

2.2 Lessons Learned

A number of interesting issues arose in the construction of the web of information surrounding Minix, which
incidently is an ongoing project, neither complete nor correct with respect to my current thinking. I list them
below, in no particular order of importance (they all seem to be!)

- View Independence: an important issue in any hypermedia web is whether the basic information is
independent of a particular view one wants to study it from. My initial linear approach to developing these
stacks was seriously flawed in this regard. Specifically, informaton about process usage (operating system
services and user applications, specification (the system interface) and implementation (the kernel), needs to
be defined to a large extent independent of the "direction" one views that information from. This relates
somewhat to the redundancy probem prevalent in poorly designed database schemas, but there is also a
modelling issue so important to understanding. The old saying that you don't really know something until
you've seen it from at least two perspectives is an important issue here.

- Completeness: if a hypermedia web is incomplete with respect to the system it is attempting to model,
students quickly tire of it. For example, a primary issue that came up was whether or not the web could be
taken down to the code level, up to the device driver, file system, and memory manager levels, or to
generalizations of these subsystems. The answer in my case is, to an extent, but not completely. For
example, I am currently considering a hypercard front-end on our PC network, accessing and encapsulating
the Minix code database on our SUN network. Related here are the issues of view independence and full
integration.

Latour - 6

- Full Integration: an issue that came when discussing what a system family web would look like was the
extent to which an instantiated system member was integrated into the family web. That is, is the mode of
interaction to access the web and mine for artifacts, or to integrate the new system into the web. This raises
subtle issues of version control and configuration management that are central to any large software
management effort.

- Simulation vs. the Real Thing: multi-media systems such as Hypercard and Macro-Media Director, as well
as CASE tools such as State-Mate provide a rich set of visual simulation tools. In contrast to this, we have
discussed providing the hypermedia environment with hooks to explore the dynamics of the system as it's
being constructed. This is an important issue when considering the following bullet:

- Person-Hours of Development Time: hypermedia webs take large amounts of time to develop, which I
suppose is an issue that has hindered the development of good "static" documentation throughout the
software ages. The issue here, and the domain speficic toolkit developers should have a good handle on
this, is how this development work can be "amortized" across the system family.

- View Formalism: Considering each screen as a view, is each based on a fundamentally sound model?
Furthermore, is the model formal, or does it have a formal underpinning? In our hypermedia experiments
with integrated component libraries, we defined Ada specification views that were based on Larch formal
interface specifications [Liskov86], which in turn were based on a hierachy of formal algebraic models
[Wing90]. An issue that we considered, but didn't pursue, was to take advantage of Ada and Larch
specification language formalism to define much more granular connections between artifacts, a task that
would require automatic link generation support.

- Web Growth: An issue that I've considered and rejected for the present with my student hypermedia
experiments is the ability of the student to add novice knowledge to the web in a way that grows and is
refined as progress through the material is made. One such class project currently involves the
implementation of a kernel along with accompanying memory management and file management support
for a small virtual machine. There clearly are expert/novice issues involved when constructing a complete
hypermedia web within a multi-person software development effort.

3 Comparison

There are a number of hypermedia-related efforts currently ongoing in the WISR community, including the work
at Hewlett-Packard on Domain Specific Toolkits [6] and the KAPTUR work CTA [1]. In addition a good deal of
hypermedia-reuse research was done by the MCC group [3]. Related work in semantic network construction and
navigation was done at Unisys [12] and AT&T [4].

In addition to the hypermedia-specific work mentioned above, hypermedia systems will benefit greatly from a
more complete understanding of the structure, formalism, and dynamics of domain specific software
architectures and their associated toolkits.

There are, of course, many differences between a typical software development environment and a University
learning environment. The definition of "novice" and "expert" is much more refined in a software development
environment. But there are similarities as well. The difference actually might very well be one of view rather
than view independent knowledge.

Latour - 7
References

[1] Bailin, S.C., and Henderson, S., "Towards a Case-Based Software Engineering Environment", Fifth
Annual Workshop on Software Reuse, Palo Alto, CA., 1992.

[2] Batory, D., "On the Difference Between Very Large Scale Reuse and Large Scale Reuse", Fourth Annual
Workshop on Software Reuse, Reston, VA., 1991.

[3] Biggerstaff, T., "Hypermedia as a Tool to Aid Large Scale Reuse", Workshop on Software Reuse, Rocky
Mountain Institute of Software Engineering, Boulder, CO., October, 1987.

[4] Devanbu, P., "Re-use of Software Knowledge: A Progress Report", Third Annual Workshop: Methods and
Tools for Reuse, June, 1990.

[5] Edwards, S., "The 3C Model of Reusable Software Components", Third Annual Workshop: Methods and
Tools for Reuse, Syracuse, 1990.

[6] Griss, M., "A Multi-Disciplinary Software Reuse Research Program", Fifth Annual Workshop on Software
Reuse, Palo Alto, CA., 1992.

[7] Latour, L., and Johnson, E.,"SEER: A graphical retrieval system for reusable Ada software modules",
Third International IEEE Conference on Ada Applications and Environments, Manchester, NH, May, 1988.

[8] Latour, L., Wheeler, T., and Frakes, W., "Descriptive and Predictive Aspects of the 3C Model: SETA1
Working Group Summary", Third Annual Workshop: Methods and Tools for Reuse, Syracuse, 1990.

[9] Latour, L.,"Layered Generic Architectures for Reuse Engineering", First International Workshop on
Software Reusability, Dortmund, Germany, 1991.

[10] Liskov, B., and Guttag, J., Abstraction and Specification in Program Development, McGraw Hill, 1986.

[11] Parnas, D.L. and Clements, P.C., "A Rational Design Process: How and Why to Fake It", IEEE
Transactions on Software Engineering, Vol. 12, No. 2, February, 1986.

[12] Solderitsch, J., "An Organon: Intelligent Reuse of Software Assets and Domain Knowledge", Fourth
Annual Workshop on Software Reuse, Reston, VA., November, 1991.

[13] Tanenbaum, A.S., Operating Systems: Design and Implementation, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1987.

[14] Tracz, W.J., and Edwards, S., "Implementation Working Group Report", Reuse in Practice Workshop,
Pittsburgh, PA., 1989.

[15] Tracz, W.J., "A CASE for Domain-Specific Software Architectures", Fifth Annual Workshop on Software
Reuse, Palo Alto, CA, November, 1992.

[16] Wing, J.M., "A Specifier's Introduction to Formal Methods", IEEE Computer, September, 1990.

Latour - 8
4 Biography
Larry Latour is an Associate Professor of Computer Science at the Univeristy of Maine, having received his PhD
degree in Computer Science from Stevens Institute of Technology in 1985. His work was in the development of a
model theoretic approach to concurrency control, and he has since looked at how algebraic specifications of
abstract objects can enhance concurrency control in object databases. At the same time he developed his software
engineering interests at the Ft. MOnmouth Center for Software Engineering. He was introduced to reuse in 1986
at the Syracuse University Annual Software Engineering Workshop in Minnowbrook, NY, where he and a small
group of Tools and Environments working group members began what is currently the National WISR workshop
series on software reuse. In conjunction with this workshop he manages the WISR repository at Maine. As well
as hypermedia systems his interests include formal methods in reuse, generic code architectures, quality
university teaching, and computing at the K-12 level.

