
Kozaczynski - 1

Reuse Enabling Technology
On Constructing Systems From Large-grained Components

Wojtek Kozaczynski

Andersen Consulting
Center for Strategic Technology Research

100 S. Wacker Dr., Chicago IL 60606
Tel: 312-507-6682

Email: wojtek@andersen.com
Fax: 312-507-3526

Abstract
This position paper addresses the technological requirements for
domain-specific reuse of large-grained software objects. Large-grained
software objects are on the order of subsystems or self-sustained
modules and we assume that they encapsulate well defined functionality
and have formally specified interfaces. Our main concern is what
technology must be in place in order to support a development process
where complex, distributed systems are composed/assembled from such
large-grained components. We briefly describe what we call the Module
Development, Coordination, and Interconnection Technology. We argue
that this technology should support a system development process that
naturally promotes and enables reuse.

Keywords: reuse process, technology, specifications, problem domain

Workshop Goals: present an approach to enable reuse, obtain feedback, learn, networking

Working Groups: process models, tool and environments, domain analysis, management and
economics

Kozaczynski - 2
1 Background

Andersen Consulting is one of the largest consulting companies in the world. A very large part of its
revenue comes from building computer systems that support clients' mission-critical business operations.
Andersen Consulting perceives great potential value in implementing a large-scale reuse program. A software
reuse program can be looked at from three major perspectives: (i) the management infrastructure (investment,
dedicated resources/organizations, enacting the process, incentive structure, legal issues, ...) (ii) the professional
skills and culture (polarization of skills, new skills development, attitudes, education and training, ...), and (iii) the
technical infrastructure.

This paper addresses the third perspective of reuse; the enabling technology. We argue that in order
to achieve significant gains from reuse, the process of building systems must be changed. Specifically,
the systems should be assembled from large, ready to use components/modules encapsulating well-
defined, domain-specific functionality. There is nothing new in this idea except that we assume that:

• it should be possible to develop components independently from each other, using languages that
best suit their functionality, and let them execute in environments that best suit their non-functional
requirements (including cost)

• it should be possible and easy to assemble components in a number of different configurations
without need to change their internals, and

• it should be possible to interconnect the components into a running system despite their
heterogeneity (different languages and execution environments).

To be able to do the above a new technology must be produced, integrated, and instrumented with tools.
We refer to it as Module Development, Coordination, and Interconnection Technology. This technology,
addressed in more detail in the following section, should enable a domain architecture specific,
component-based process of building large, distributed systems. Before we proceed, we should make
two points explicit.

Point one is that the reuse we are interested in can be characterized as reuse of large-granularity, or
large-object reuse. Small-granularity reuse would be the reuse of generic components independent of the
problem domain. Examples of small-grained components would be file/DB access functions, data
structure manipulation functions, individual object classes, I/O objects and functions, etc. The parts we
are interested in are on the order of complete functional modules or subsystems. Examples of such
modules would be an order processing subsystem, a customer account maintenance module, an entire UI
client, or a production simulation module.

The above point leads to an observation on the reusability of large-grained components. These
components encapsulate very domain-specific knowledge and behavior. Due to their size and potential
internal complexity, their development may be costly. This cost can be amortized only if the components
are used repetitively with no (or only minimal) changes. Fortunately, Andersen Consulting typically
constructs many instances of a generic system type (eg. inventory management) in the same domain for
different clients. Moreover, the company is organized along specific business or industry domains
(banking, insurance, utilities, ...). This simplifies the facilitation and monitoring of a domain-specific
reuse process.

Kozaczynski - 3
2 Position

The Software Engineering Lab of the Center for Strategic Technology Research (CSTaR) is evaluating the
feasibility of producing the Module Development, Coordination, and Interconnection

Kozaczynski - 4
Technology. The technology should support a system building process that naturally promotes reuse by

implementing the principles of separation of concerns, abstraction, and functional decomposition. The process,
illustrated Figure 1, can be described as follows:

Module
Interface
Formalism

• Coordination and Cooperation
 Formalism

• Resource Allocation Formalism

Connection Infrastructure Formalism

Hetrogenous
 Modules

Computing Environment
(Resource) Communication

OSs, Software Buses, Telecom
Software, Transaction Monitors,
Processors, Processes, . . .

Computing/Execution
 Environment (C/EE)

C/EE
Adapters

Control Modules

The System

{

Figure 1. Domain-specific, component-based system development
process abstractions and products.

• The interfaces of a reusable module are formally specified in an interface specification language. Such a
specification describes the services provided and required by the module and the conditions under which they
can be rendered. The specification becomes a contract between module developers and module users and
separates their concerns. Modules are developed with minimal assumptions of how they will interconnect with
the other modules they will request services from or provide services to. They can be written in a number of
languages for which the bindings (with the

Kozaczynski - 5
interface spec language) are defined and can run on a set of predefined platforms (computing environments).

• Module interface specifications (not the modules implementations) are used to develop a specification of
module coordination and cooperation, and assign modules to computing resources. The designer (a person who
composes the system from reusable modules) works with a set of abstractions of communication services and
computing resources rather than with particular services or resources of an execution environment. These
abstractions are provided by the Connection Infrastructure Formalism. They are a boundary between his
concerns and the concerns of the software engineer who will implement the execution environment(s) for the
system. Examples of these abstraction are: 1-to-1 synchronous communication, 1-to-n asynchronous
communication with the "all must receive" requirement, process, etc.

• The abstractions of the connection infrastructure are mapped into a number of different implementations of
execution environments. For example, the underlying execution environment can be Unix-based and use only
RPCs to support communication between modules. On the other hand, it may be a proprietary software bus like
Andersen's FCP (FOUNDATION for Cooperative Processing) that runs on a network of different computers and
workstations.

• The final run-time version of a system is assembled/made from the functional modules (the reusable, domain-
specific modules), modules developed to help coordinate the work on the functional modules (the control
modules), automatically generated module adapters, and the underlying execution environment services. The
only part that we may not be able to generate from the specifications (as shown in the Figure) are the control
modules. It would be naive to assume that a complex system can be assembled entirely from reusable modules:

- If functions are missing, new modules (hopefully reusable) must be developed or existing ones must be
modified effectively giving rise to new modules or versions.

- In order to support complex, multi-module interactions, control modules may have to be written. These
modules should have no domain-specific function but coordinate the work of the functional modules.

We strongly believe that the technology to enable the above process can be developed and packaged into
tools. The process itself has a number of obvious advantages:

• The development of a few systems in the same (sub)domain should result in a library of reusable modules and
system designs (module coordination and cooperation and resource assignment designs). These modules and
designs are a very tangible form of a Domain-specific Software Architecture.

• The module development, testing and certification has been separated from system assembly and testing. These
activities can be delegated to different groups of specialists and performed at different locations. For example,
Andersen Consulting is forming a number of geographically distributed Solution Engineering Centers. Most of
the module development and testing will be done at these centers. However, systems assembly and testing will
be done by engagement teams at the client locations. Also, even if new modules must be made for a system,
their development can overlap in time with system testing. This is simply done by using the module interface
specification as a contract and as a base for developing or generating a module stub at the same time.

• System quality and process productivity should naturally increase with every subsequent iteration of a system
development. Similarly, the quality of the reusable components and the system designs should increase.

Kozaczynski - 6

• The decomposition of a systems into relatively independent modules with the interconnection, coordination, and
communication logic removed from them should allow for relatively easy construction of large, distributed, and
heterogeneous systems.

• The same decomposition of systems into modules with well specified external behavior will enable flexible
system adaptation and tuning. For example, a new, better performing version of a module can be developed and
put in place of the old version with only minimal, automatically applied changes to the system.

• The approach provides a consistent way of treating and using legacy systems. After a wrapper and an interface
specification is developed for a legacy system (or its part), it can be treated as a module.

3 Comparison

CSTaR's Software Engineering Lab is currently conducting three parallel projects that collectively address the
technology described in the previous section:

• a project on module interface specifications

• a project on system distributed architecture design (related to the coordination, cooperation and resource
allocation design), and

• a project on software buses (related to the interconnection infrastructures).

These projects borrow ideas from a number of other industrial and academic research projects. Similar ideas
of module interface specification and flexible module interconnection can be found in the work of Jim Purtilo
[6,7] and Dewayne Perry [3,4]. Perry introduces an idea of module service pre- and post-conditions that improve
the semantic richness of the module interface specifications. Purtilo introduces the notion of a software bus (an
interconnection infrastructure), automatically generated adapters, and application geometry design which is
similar to the module cooperation and coordination design. However, both authors are looking at small-grained
module reuse rather than large-grained module reuse. Perry also assumes that modules are assembled into a single
run-time unit and therefore share address space. We assume explicitly that modules are distributed and
communicate only via messages.

The idea of a unifying interconnection infrastructure and an interface specification language is also central to
OMG CORBA [2]. CORBA is a standard for the developers of OO software buses. From our perspective a
CORBA-compliant bus is one of many possible implementations of an interconnection infrastructure. Some of the
abstract services in our connection infrastructure formalism have no equivalent counterparts in the CORBA
specification and have to be constructed from its lower-level services. Also, the issues of distributed systems
design are conceptually higher than the issues addressed by CORBA.

The ideas of domain-specific software architectures and their role in reuse are obviously not new [5].
However, we have defined domain-specific software architectures very pragmatically as collections of reusable
modules and systems designs. On the other hand, it seems intuitive that our reusable component libraries should
be organized along domain-specific taxonomies described in a formal way (similar to RLF [1], for example) and
should contain not only modules but also other design artifacts.

Kozaczynski - 7
References

[1] Technical Concept Document : CARDS, STARS-C-04107A/001/01, PARAMEX, 1993

[2] The Common Object Request Broker: Architecture and Specification , OMG Document Number
91.12.1

[3] Dewayne E. Perry, "The Inscape Program Construction and Evaluation Environment", Tech.
Report, Computer Technology Research Lab., AT&T Bell Laboratories, 1986

[4] Dewayne E. Perry, "Software Interconnection Modules", Proceedings of the International
Conference on Software Engineering, Monterey, CA, May-April 1987

[5] Ruben Prieto-Diaz and Guillermo Arango, "Domain Analysis and Software System Modeling",
IEEE Computer Society Tutorial, Los Alamitos, CA 1991

[6] James M. Purtilo, "The POLYLITH Software Bus", University of Maryland CSD Technical
Report 2469, 1990

[7] James M. Purtilo, Richard T. Snodgrass and Alexander L. Wolf, "Software Bus Organization:
Reference Model and Comparison of Two Existing Systems", DARPA Module Interconnection
Formalism Working Group, Technical Note No. 8, November 1991

4 Bibliography

Dr. Wojtek (Voytek) Kozaczynski is the director of the CSTaR's Software Engineering Laboratory. Before
assuming this position in 1992 he had been the principal investigator on the software analysis and re-engineering
project. The project resulted in development of two experimental workbenches supporting the activities of
understanding and design recovery of legacy systems as well as recovery of reusable components from these
systems.

Dr. Kozaczynski's research interests include: software development environments, software reuse, software
renovation, program analysis and understanding and automatic program transformation. He also has an extensive
database background that includes the development of a commercial DBMS and work on adaptive database
decomposition in distributed databases. Prior to joining CSTaR in 1988 he was working as an Assistant Professor
at the Department of Information and Decision Sciences, University of Illinois at Chicago, where he taught and
researched the application of AI techniques to information systems design and development and database design.
Dr. Kozaczynski came to the U.S. in 1982 after receiving his graduate degree from the Technical University of
Worclaw, Poland.

