From Software Reuse
to
Example-Based Design

Scott Henninger

Department of Computer Science & Engineering
115 Ferguson Hall, 880115
University of Nebraska
Lincoln, NE 68588-0115
Tel: (402) 472-8394
Email: scotth@cse.unl.edu

Fax: (402) 472-7767

Abstract

In this position paper, I address three separate issues. The first has to do with an overly restricted scope in
current software reuse work. Example-based design refers to a superset of software reuse in which
components are viewed as examples that can be used to explore previous design solutions and provide a
concrete context for learning system concepts, in addition to providing material for software reuse. The
second issue is that we need ways of better understanding the process of using examples as a basis for
design. A preliminary process model is presented and ways of incorporating example-based design into
the design process are suggested. Third, repositories and tools for relevant information is an important
element in example-based design. Shortcomings of current software retrieval systems are outlined, and
solutions are briefly presented.

Key Words: software reuse, reuse environments, software design, reuse process retrieval, software
repository.

Workshop Goals: Learn more about reuse in corporate settings, refine my views on example-based design,
increase the awareness and knowledge base on cognitive barriers to reuse.

Working Groups: tools and environments, reuse process models, domain analysis/engineering, reuse and
OO methods

Henniger - 1

Henniger - 2

1 Background

My involvement in the software reuse field has focused on the development of tools to aid the process of
software reuse. My dissertation work involved the construction and evaluation of a retrieval tool, named
CodeFinder, that combined a connectionist-based retrieval model with tools for iterative query construction to
support retrieval and exploration of repositories. A series of empirical studies was conducted on a repository
consisting of over 1800 components. This study revealed that the re-use of source code was only one way
that subjects made use of the repository. Subjects also searched for specific functionality to understand how
existing features worked, extracted design information that was used to create code from scratch, and located
parts where their code needed to fit into the existing system. The components therefore served as concrete
examples that facilitated the development process. These findings have led me to begin broadening the view
of software reuse and repository tools to include these example-based techniques, and explore other ways in
which examples can improve the design and development process.

2 Position

The traditional definition of software reuse has centered on the notion that a software object is reused in a
new system [5,6]. This makes sense, as the objective is to use the results of previous design efforts, but it
also takes an overly restrictive view of how existing software artifacts can facilitate the design process. Take,
for example, a situation in which a designer needs a technique that arranges a listing of e-mail messages so
that replies to previous messages are indented. The designer uses a network news reader that performs just
this function for news messages. Looking at the source code for the news reader, the designer finds out how
messages are arranged and indented, but the environment for the news reader differs enough from the e-mail
system that the code cannot be re-used. The designer goes back to the e-mail application and designs the
message arrangement facility from scratch, but with an improved understanding of how it should be done.

Has the designer engaged in software reuse? By most traditional definitions of reuse, no. Software reuse
must re-use the software. But if we reformulate the question to ask whether the design process has been
facilitated, then we must believe that something good has happened. The designer consulted an existing
example that transformed an ill-defined design task into a straightforward coding task. The traditional
definition of software reuse cannot easily accommodate activities that do not involve physical reuse. I
believe that repositories of existing code can support a much wider range of activities. For example, a
working piece of code can be used to explore previous design solutions and can provide a concrete context for
learning system concepts in addition to providing material for software reuse. For these reasons, I assert that
the software reuse community needs to broaden its scope and pursue an example-based design methodology
for its research context. As I define it, example-based design is the process of using existing examples of
design artifacts to facilitate the design process, where the re-use of existing design artifacts is one of many
possibilities.

2.1 Technical Issues for Example-Based Design

The current wisdom in software reuse research and practice has been leaning toward the position that
managerial issues are the dominant barrier to software reuse. This position asserts that current reuse methods
and tools are adequate. It is my conviction that while managerial and incentive issues need to be more fully
explored, significant cognitive barriers to the reuse of code remain largely unexplored and unresolved.
Current technical solutions to these problems have not yet reached the critical point where the effort involved
in re-using code or other design artifacts (such as specifications) is equal to or less than creating design
artifacts from scratch. Software reuse and example-based design does not come for free, and we need to
build a better understanding of the costs of building and using repositories of code and other design artifacts.

Henniger - 3

To understand these costs, we must first seek to develop models of example-based design. Development of
such models will facilitate an understanding of how the design process is impacted when examples are an
integral part of the design process. Figure 1 is a starting point toward this understanding [2]. It identifies
three cognitive processes involved

LT
Figure 1: The Process of Using Examples in Design.

in example-based design and their relationships. This diagram in not intended as a comprehensive model of
software development, but as a stepping stone to the development of a model of example-based design.
While more comprehensive models have been developed [4], this model provides a flavor for the kinds of
models needed to advance an understanding of the example-based design process.

This figure also underscores the need for process models and development methodologies that incorporate
reuse and exploring the corporate repository for ideas and code. We need models of how existing systems
can be used as a basis for new systems, not just in terms of re-using existing source code, but in terms of
using and building on ideas and features of previous systems. Designers need to see existing systems as their
first option, and programming as a last resort. From a systems design standpoint, such a development
methodology would greatly benefit from information about how successful different features in previous
systems were. Was the feature used in its intended manner? Did users report trouble using it? Feedback of
this kind is an important ingredient for the evolution of better software systems.

2.2 Retrieval Tools for Example-Based Design

Another limiting element of the software reuse perspective concerns restricting library components to those
meeting reusability certification requirements. The certification process is an excellent means for developing
quality reusable code, but the costs of developing code and deigns that transcend the current development
project have proven to be quite high, perhaps prohibitively so.' Intermediate levels are needed that involve
lower costs, while delivering relevant examples of working code, regardless of whether it meets reusability
standards. Because example-based design is concerned more with using examples to facilitates design, and
not just re-using artifacts, the certification constraint can be relaxed to allow levels of certification and non-
certified components into the repository, with appropriate labeling to inform designers of a component's
certification properties.

Lifting the ban on non-certified components places an extra burden on the repository. Finding relevant
examples in large repositories requires sophisticated retrieval tools. Current techniques for retrieving
software components for reuse have failed in two important ways: First, most techniques have focused on
elaborate retrieval models that require information to be structured in sophisticated ways. Second, retrieval
tools have been based on the assumption that users have a well-defined retrieval need and can easily construct
an appropriate query.

The construction of a repository and the method used to retrieve objects in it are closely related. For
example, a retrieval system that uses hierarchical categorization as its basis for retrieval must use a repository
that is organized hierarchically. The costs and benefits of the requisite information structure must be
weighed carefully before choosing a retrieval method. Choosing a method that requires a highly structured
repository will dramatically increase the costs of building a repository. Lower cost methods are needed that

150me would claim that building 55 software system is prohibitively high, much less building
reusable components while building a system.

Henniger - 4

allow repositories to be constructed at low cost and combined with intelligent retrieval methods that can make
use of low-structure repositories.

Retrieval needs for software designers span a continuum from well-defined look-up ("what's the parameter
structure for sort in Common Lisp?") to ill-defined design problem ("how would one go about designing an
intelligent e-mail reply facility?") [4]. Well-defined problems can be easily solved with current database and
string matching technologies. Finding relevant information for ill-defined problems is as much a matter of
supporting the problem solving process as it is retrieval mechanics. The retrieval process in these cases is a
learning process, where the users learn about the structure and contents of the repository and refine their
information need as they query and browse the information space. This indicates the crucial need for flexible
querying methods that allow the iterative refinement of queries.

To this end, I have developed a software retrieval tool named CodeFinder that couples a retrieval model
relying on very little a-priori structuring with a semi-intelligent tool for extracting components and key terms
from existing source code files [3,4]. Codefinder uses a connectionist-based retrieval method that can induce
relationships among repository objects without the need for elaborate repository structuring. Codefinder
supports iterative refinement of information needs through a technique called retrieval by reformulation [7],
which provides methods for incrementally defining queries and browsing the repository. Although empirical
results have shown this method to be adequate, CodeFinder also provides facilities that can help users
incrementally construct a more structured repository. These re-structuring tools take effect in the process of
finding relevant information so that the resulting structures evolve in the context of use as opposed to an
arbitrary categorization created by a repository administrator that may or may not reflect the needs of the
users.

3 Comparison

The concept of example-based design is complementary to much of the software reuse literature, which has
focused exclusively on re-using source code. Some have begun to research how specifications and other
design artifacts can be re-used, but none have explored alternative ways in which a repository of examples
can be used to facilitate the design process. This position paper also augments current research in certifying
reusable components [1] by acknowledging that a continuum of certification can exist in an example-based
design strategy.

References

[1] G. Caldira, V.R. Basili, "Identifying and Qualifying Reusable Software Components", IEEE Computer,
24(2), Feb. 1991, pp. 61-70.

[2] G. Fischer, S.R. Henninger, D.F. Redmiles, "Cognitive Tools for Locating and Comprehending Software
Objects for Reuse", Thirteenth International Conference on Software Engineering (Austin, TX), ACM,
IEEE, Los Alamitos, CA, 1991, pp. 318-328.

[3] S. Henninger, "Retrieving Software Objects in an Example-Based Programming Environment",
Proceedings SIGIR '91 (Chicago, IL), ACM, 1991, pp. 251-260.

[4] S.R. Henninger, Locating Relevant Examples for Example-Based Software Design, Unpublished Ph.D.
Dissertation, Department of Computer Science, University of Colorado, 1993.

Henniger - 5

[5] R. Prieto-Diaz, "Implementing Faceted Classification for Software Reuse", Communications of the ACM,
35(5), May 1991.

[6] T.A. Standish, "An Essay on Software Reuse", IEEE Transactions on Sofiware Engineering, SE-10(5),
Sept. 1984, pp. 494-497.

[7] M.D. Williams, "What Makes RABBIT Run?", International Journal of Man-Machine Studies, 21, 1984,
pp. 333-352.

4 Biography

Scott Henninger is an Assistant Professor in the Department of Computer Science and Engineering at the
University of Nebraska. He received a BSEE from the University of Southern California in 1983. The next
five years were spent as a development engineer working on flight control systems and mainframe storage
subsystems. He then returned to academics, earning a Ph.D. in Computer Science, with a certificate in
Cognitive Science, from the University of Colorado in May, 1993. His dissertation was on retrieval tools for
software reuse repositories, and his current interests, all from a human factors standpoint, are in software
reuse environments, requirement and specification technologies, design issues for multi-media systems, and
cognitive, organizational, and social issues in the design and development of software.

Henniger - 6

