
Towards Information Systems for Software Producers

Aarne H. Yl�a-Rotiala

Nokia Telecommunications

P.O. Box 33

FIN-02601 Espoo, FINLAND

Tel: (358) 0-511 6542

Email: aarne.yla-rotiala@ntc.nokia.com

Abstract

Software producers need a de�ned information base to operate on. A software production

process cannot be properly de�ned without giving meaning to the products and raw materials

of the process. The information 
ow is the essence of a software process, and therefore the need

for well-de�ned software information models is evident.

A realistic software engineering information system that takes into account the relations

between input and output information would be a powerful aid in software production. Software

processes have been much discussed, but the attention to the information in these processes has

not been adequate. A process cannot exist without an information system, implicit or explicit.

If the software information is explicitly modeled, a better process with enchanced reuse and

reusability will follow.

Keywords: Reuse, information system, software engineering environments, software production

process.

Workshop Goals: Communication, exchange of ideas and new idea creation.

Working Groups: Reuse process models, Reuse maturity models, Tools and environments,

Reuse management and economics

I would like to propose something along the lines of \Reuse in the software life cycle" or

(perhaps better formulation) \How to �t reuse in actual software production". I hope this is

what the \Reuse process models" working group is about.

Yl�a-Rotiala- 1



1 Background

My background is mostly practical. How to write less code while making more money is a question

that has intrigued me for a long time. I have worked as a programmer and designer (as a \software

engineer") for �ve years, during which time I have tried to �nd and build reusable components. My

industrial experiences include working in projects of di�ering size, and these experiences motivated

me to begin studies aiming to a Ph.D, with a subject relating to reuse. My subject follows quite

closely my position below.

2 Position

Software producers have been struggling with the problems of productivity, quality and reliability

for some time now. As early as 1969 the need for mass-production was recognized. The term

\software factory" has been used on several occasions. Analogies have been sought from other

engineering disciplines: software reliability modeling has its origins in hardware reliability, building

software is often compared to building bridges or houses, and the very term \software reuse"

was borrowed from manufacturing. I claim that the traditional analogies all more or less fail in

describing the process of software production and that the last of them - software reuse - is one of

the worst of them. I do not claim that these analogies are worthless, I merely hold the position

that in order to discuss the software production processes, their di�culties and the peculiarities of

enhancing the productivity of software production one should consider the essence of software - its

intangibility, zero-cost replicability, modi�ability - and the actual process that creates it. Software

reuse will not just happen, but it is more likely to happen if Joe Programmer's reality is taken into

consideration.

Software production equals to electronic document manipulation. When one starts from the scratch,

one has no previous documents to use. If, however, there is some pre-existing material to be used,

and it is used, we usually claim that \reuse"'has taken place. [1] presents the idea of a maintenance

process that would be based on reuse. The idea can be taken further - the whole software production

could be viewed similarly. When a software house starts, its information base is usually quite small.

If this information base is considered a strategic asset and carefully nurtured, the likelihood of its

usefulness will grow. The bene�ts for a company cannot be predicted, but I would expect better

producticity and larger revenues.

In the maintenance-as-reuse -paradigm there is an information system, which is available to the

software engineer. The engineer has a problem description, and (s)he is to produce a set of other

documents, including the program code that will solve the stated program. If the information

system is to have any real value to the engineer, it should give direct support to the tasks that face

him/her. The engineer has a need to �nd relevant pieces of information, depending on the task at

hand and the dependencies and interconnections of these pieces to �nd out old, proven solutions. If

and when these old solutions are found, the engineer can use (or \reuse" them either by modifying

them or connecting them in a novel fashion. This application of old data to a new problem is

what lies in the heart of reuse and is an essencial component in software production. Very seldom

does one start without a single document and build everything from scratch, and if one does, the

competitiveness of the resulting product is likely to be far from optimal.

The Capability Maturity Model [2] is quite concerned with processes and improving them. The

repeated, de�ned and continuous measurement is stressed as a necessary requirement for anyone

Yl�a-Rotiala- 2



wishing to gain better performance in software production. This approach gives smaller attention

to the actual process that is used in the production and virtually none to the information that is

used in the process. The structure of the model itself is, however, a good example of a generic

de�nition of an information process - the steps to take to reach level 5 just don't lead into building

software, they lead into a software process. The same approach could be used when designing a

software engineering environment - the required data should be made available to the engineer.

If one is to talk about software productivity and software reuse, it would be bene�cial to consider the

way software is currently produced - to build a model of the process that is used to create software.

Naturally, the number of di�erent processes is not known, at least not to me, but one thing remains

as an invariant: software producers use tools to search, modify and connect existing documents,

which they use to produce a set of new, previously unseen documents. These documents are usually

in a human-understandable form and can be stored. The essential parts of a SW production process

are the raw-materials (the existing documents), the tools (e.g. a compiler, or an editor) and the

results (the new documents).

In manufacturing, the use of older products is true re-use, but the a�x \re" somehow seems to lose

meaning with software, which does not need to be reused and indeed cannot be reused. A more

proper analogy would be an accountant, accounting software and an account: the accountant uses

a tool (software) to handle an account (a reusable asset) to modify the account (make deposits

or withdrawals). The accountant might even be able to take an existing account and use it as

a template in order to create a new one, with the help of the given tool. Likewise, the software

engineer uses available information, usually with the help of tools, and produces new information.

The process can have, and should have, a simple description, which can naturally have an in�nite

number of re�nements and slightly di�ering instantiations.

An explicit information model for software engineering does not exist, but it should. Software

engineers have several lower-level methods for doing their work - formal methods, object-orientation,

prototyping and cleanroom software engineering are good examples of these task-oriented tools.

These tools help the engineer in the task at hand, but they can not provide an environment for the

whole development cycle of the software product, from the customer contact to the product delivery,

or from the �rst representation of a product idea to the withdrawal of the product from the market.

The task-speci�c methods should not be disturbed - if certain analysis, design, implementation etc.

methods are familiar, they should naturally be used. Each of these stages should be performed in a

proper information context, not with chaotic document distribution, duplication and modi�cation.

Many a coder �nds a version control system useful, and there are people who consider CASE tools

as enhancements to the work. In a similar fashion, a larger information system could help the work

an average engineer.

The process I have described in the preceding passages is the cornerstone of my position towards

software reuse. I do not see \reuse" or \reuse processes" interesting as such. What interests

me are the information models actually used in software producing organizations. A data model,

an information system and a process which takes all these into account is what I have in mind.

A proper information system, which is easy and natural for software engineers, or even a single

software engineer, will result in a boost in productivity. Stated this way, the problem may sound like

a technical one, but it isn't: for an organization larger than just a few people, a consensus should be

reached and the whole organization should agree on the system (though not instantaneously). Also,

the basic model of information processing should be recognized. These are management problems,

which may be easier to solve if the technical problems like what data to store, where and how and

how to search, retrieve and reference the stored data and by which tools, have excellent and obvious

solutions.

Yl�a-Rotiala- 3



3 Comparison with other work

I'll explain here the di�erences and similarities between my position and PCTE[3], CMM[2] and

ISO-9000, one by one, and then conclude that my opinions are very similar to those of [4] and [5].

Especially the work on Software Engineering Environments, Integrated Project Support Environ-

ments [6] and Software Repositories [7] are very close to what I am talking about.

PCTE is a standard that describes a way to share software engineering data. It has a very powerful

and abstract data modeling device and a well-de�ned interface. The di�erence between PCTE and

my position is that PCTE is a meta-meta-model - and is actually on a di�erent level. PCTE is a

tool to discuss an information system, not an information system as such. What is interesting with

PCTE (and similar e�orts, e.g. CAIS and CDIF) is that there seem to be common standards for the

information systems before there is any kind of an agreement upon the contents of these systems.

This peculiar order of de�nitions shows itself in the contents of PCTE (and others): anything can

be modelled within the limits of these standards.

CMM talks about process, but almost nothing else. Process is an independent entity, and I �nd

this questionable, since - as we all should know - a process with no de�ned inputs and outputs is a

pretty useless one. If we take the analogy into a program, CMM's approach would be like talking

about a program's e�ciency and overall quality just by looking at the code and at the internal

functioning of the program. What seems to be missing is the link to the outer world, the inputs

and the outputs.

ISO-9000 is a general standard concerning the quality of a �rm. ISO-9000 is concerned with the

formal, repeatable and documented quality assurance of an organization. It gives quidelines for

things like audits, formal approvals and well-de�ned responsibilit!es and authorities during the

production. Little, if anything is said about actual production, about the stages of a process where

the possible errors are being made. Some consultants claim that following ISO-9000 results in

improved productivity in the �eld of software production, which claims may or may not be true.

However, ISO-9000 is only a general framework into which an information system could be �tted.

So, ISO-9000 is interesting as a starting point or as an organizational context.

Brown's text about the nature of a software engineering database is a good one and, in my opinion,

a correct one. The work of e.g. Jarke et al. [4] and Rombach [5] has the same direction that I have

in mind. Software producers should develop their data models and build their information systems

and processes accordingly. The routine work done by engineers should increasingly happen with

the information base. The di�culty of this task is described in [8], but the task should not be an

impossible one.

References

[1] V. Basili, \Viewing Maintenance as Reuse-Oriented Software Development," IEEE Software,

pp. 19{25, January 1990.

[2] M. Paulk, B. Curtis, and C. et al., \Capability Maturity Model for Software," Tech. Rep.

CMU/SEI-91-TR-24, Software Engineering Institute/Carnegie Mellon University, Pittsburgh,

Pennsylvania, August 1991.

[3] ECMA, \Portable Common Tool Environment (PCTE) Abstract Speci�cation," Tech. Rep.

ECMA-149, European Computer Manufacturers Association (ECMA), 1990.

Yl�a-Rotiala- 4



[4] M. Jarke, J. Mylopoulos, J. Schmidt, and Y. Vassiliou, \Information Systems Development as

Knowledge Engineering: A Review of the DAIDA Project," Tech. Rep. MIP-9010, University

of Passau, Passau, Germany, 1990.

[5] H. Rombach, \A Speci�cation Framework for SW Processes: Formal Speci�cation and Deriva-

tion of Information Base Requirements," in Proceedings of the 4th Intn'l Software Process Work-

shop, pp. 142{147, ACM, 1988.

[6] A. Brown, Database Support for Software Engineering. Kogan Page, 1989.

[7] J. Mylopoulos and T. Rose, \Tutorial on Software Repositories," in 15th International Confer-

ence on Software Engineering, IEEE, 1993.

[8] T. Biggersta�, C. Ellis, F. Halasz, and C. Kellogg, \Information Management Challenges in the

Software Design Process," Tech. Rep. STP-039-87, MCC, Austin, Texas, 1987.

4 Biography

Aarne H. Yl�a-Rotiala. I received an M.Sc in CS from the University of Helsinki in 1990. I have

worked as a programmer, both as an employee and as an independent contractor for �ve years. I

have participated in several commercial projects, as a subcontractor or as a principal contractor.

I have started my Ph.D studies, that were inspired by these practical experiences. Currently I am

working for Nokia Telecommunications' Software Engineering Methodology Development.

5 Acknowledgements

Many thanks to my wife Tiina for proofreading this text.

Yl�a-Rotiala- 5


