
Progress in Reusable Parts Libraries (or Lack Thereof)

Kathryn P. Yglesias

IBM Corporation

Mailstop P419/921

93 Myers Corner Road

Wappingers Falls, NY 12590

Tel: (914) 296-6587

Email: yglesias@vnet.ibm.com

Fax: (914) 296-6496

Abstract

Since Booch's abstract data type parts library was published in 1987, many part libraries

have become available but coverage of the domains of software remains minimal. There are

dozens of abstract data type (ADT) and graphical user interface (GUI) libraries. There are

also some libraries available to meet selected markets, especially when the libraries are built

to complement a consulting/service o�ering, for example those o�ered by Price Waterhouse or

KPMG Peat Marwick. It is di�cult to ascertain why a broader range of general purpose libraries

and more domain-speci�c libraries have not been built. Some experiences with information and

software libraries indicate technology limitations and technical change as two contributors.

Keywords: reuse, reusable parts, part libraries

Workshop Goals: uncover reasons for redundancy in libraries and inhibitors to broadening

range of parts

Working Groups: all

Yglesias- 1



1 Background

Kathryn Yglesias has worked with the IBM Reuse Technology Support Center for four years. Her

areas of focus have included de�ning classi�cation schemes for IBM parts; evaluation of retrieval

success; exploration of applying software reuse concepts to other software life cycle artifacts such as

process documents, user information, and designs; consultation; and planning consultation o�erings

and writing standards manuals.

2 Position

2.1 Current Parts Libraries

In the information area, much of the \reusable information" is in the form of CD-ROMs. The

type information being successfully marketed includes various versions of the Bible, dictionaries

and encyclopedias, and other information typically found in the Reference section of libraries. The

templates for legal forms also have a wide audience and are more similar to software reusable parts.

Software has the ever more abundant ADT and GUI libraries. These are being packaged with

compilers, debuggers, builders, and other associated aids frequently now. These support tools

respond to the programmers' need to be able to quickly understand what a parts set (library)

contains and help using it. This is an important development in institutionalizing reuse.

The current set of parts libraries which are publically available can be summarized as containing

many (but not all) of the basics in a wide set of variations, but containing little diversity. The

IBM internal set of libraries also includes multiple variations of the standards, as well as libraries

speci�c to software segments or niches. A subset of the specialized parts are reusable outside of

originator's domain or product group.

2.2 Problems Encountered

Initial attempts to build parts libraries were based on a trial and error process. Many things

were tried, then iterations were made to modify the sources inhibiting success. This feedback

mechanism bene�tted the developers of our most successful parts libraries of today. In the non-

code area, proposal and process libraries were built. The proposal library taught us that having the

real experts take time to write the generic, reusable information is the only way to be successful. It

is always hard to get these people's time, but it is a truism that they are needed. Although experts

were used, some of the more technical areas written for reuse were not a reuse success. It was found

that the technology changed so rapidly that the extra cost to make the information reusable could

not be recovered before the information was no longer timely. Another problem with reusing very

technical information is that the frameworks (customer environment, terminology, etc.) change so

much that extensive editing is required for reuse. Templates have proven to be the most common

components in our information libraries.

In the software/code area, some of the problems which have led to disuse of parts libraries are

change in language focus. For example, in IBM the e�ort to make applications portable to our

many platforms led to changing from PL-based languages to C or C++. The successful PL libraries

were either ported or have a declining usage. Another problem area associated with languages is

Yglesias- 2



the \good" compiler \lag". By this I refer to the many Ada programs which were written and then

re-compiled and re-tested many, many times as the compiler problems were gradually resolved.

This type problem continues to occur, but to a lesser degree. However, the overhead of re-testing,

and sometimes, modifying a large set of components for every compiler release led some (especially

Ada) programmers to abandon reuse.

A newer generation of reuse problems is occuring for OO programmers as they try to reuse class

libraries built by other product groups. This class of problem o�ers some interesting challenges for

the next few years.

2.3 Creating Reusable Parts Libraries

The parts in a part library have been found to be more widely used when the parts form a col-

lection, that is, they have common structures and purpose. Libraries of this type may be called

\architected", which is de�ned as a set of related parts which (ideally) have the characteristics

described below. [1] Experience has shown that architected parts sets are more frequently reused

than unrelated collections of parts. A contributing factor is that these characteristics also re
ect

the goals of good software engineering. And once the reuser becomes familiar with the structure of

the library, it is easier to know how to use any part in the library and to guess whether a needed

part is likely to exist within the library's domain.

The characteristics of these planned libraries show that they are successful because

1. the parts individually meet the technical requirements for reuse in terms of:

� Complexity (hiding of)

� Adaptability

� Con�gurability

� Predictability (the level of �delity of meeting performance and resource requirements)

2. the parts are structured to work together in the following ways:

� Extensibility (ability to extend the domain of the architecture)

� Scaleability (ability of architecture to map to implementation of increasing dimension

within the domain)

� Functional composability (ability of components to be combined with other components

in the architecture)

� Interoperability (ability of components to be integrated with other software not in the

architecture)

3. and user considerations are met in the following ways:

� Understandability

� Usability

� Quality (of components and supporting documentation)

� Compatibility (with existing standards, terminology, and technology)

� Salability (ability of architecture to re
ect the requirements in the eyes of the end-user).

These characteristics can be used for software (code) and information, although some of the terms

are di�erent than those typically used to measure \goodness" in information. When the list is

read, terms such as, \understandability", \usability", and \quality" apply directly to information.

However, a term such such as \consistency" might be used in place of \predictability".

Yglesias- 3



The architected libraries which we have had for several years are ADTs, GUIs, graphics objects

and proposal text segments. These libraries have sustained high usage and high acceptance. It is

my belief that an understanding of the characteristics of architected libraries (and the domains) by

the developers led to the positive reuse results of these libraries.

2.4 Reusability and Your Goals

Before continuing, it may be bene�cial to remember why reusability, architected libraries, and

domain analysis are being discussed. The purpose is to use an understanding of an organization's

business objectives and reuse principles to de�ne what parts (architected sets) will most bene�t

the organization by their creation and reuse.

The methods described here have been used on software projects to achieve signi�cant cost savings

over traditional software development methods. Informal use of these methods has resulted in

similar savings in the documentation arena. A cost analysis should always be performed before

doing the domain analysis and producing the architected libraries.

2.5 Conclusions

My experiences indicate that it is possible to increase reuse with an increased number of libraries,

and that many of the libraries need to be domain speci�c. To successfully build domain speci�c

libraries, consideration of the following increases the chances for success:

� Know your business objectives

� Understand reuse principles

� Do a domain analysis

� Avoid leading edge technology areas or those with a high rate of technical change

� Control the risks associated with evolving technology (e.g., language changes).

3 Comparison

Much e�ort in programs such as STARS has been expended towards understanding how to capture

domain knowledge and \encapsulate" it. [2] This usually includes domain analysis which drives the

creation of domain speci�c parts stored in a reuse library. This approach is worthwhile, but the

visible results of such an approach are seen only in the government arena.

Some observations can be made when contrasting the number of parts available commercially and

through the government. First, in the commercial arena there must be a large enough audience

who understands reuse, is willing to use \someone else's" software, and is in the selected domain

to justify taking the part (set) to market. A second observation is that the government does

not have this constraint. A third observation is that any government organization can de�ne its

domains without regard to how other organizations divide theirs, that is, there is no prede�ned need

for the guidance systems domain, for example, of one military organization to be the same as for

another. The consequences of these observations are that (1) it is possible for any single government

organization to make progress in their \domain", and (2) if they had to �rst get agreement on their

Yglesias- 4



domain (to establish a \market") with all other government organizations in the same general

business, then there would not be many parts in government libraries either.

My conclusions are that there is not enough concensus on \domains" across the software industry for

other part libraries to be developed. If there are not consistently recognized domains or segments,

then an insu�cient market will exist. The problem is similar to making use of ADTs { unless the

programmer has been trained to understand and look for opportunities to use ADTs, the need for

ADTs does not exist.

My position is that it is necessary to expand the scope of our available parts libraries in an archi-

tected manner, along domain lines. This must be done if we are to sustain progress in institution-

alizing reuse. Therefore, emphasis must be placed on de�ning \domains" and getting concensus on

their de�nitions.

References

[1] \IBM Reuse Methodology: Domain Analysis," tech. rep., IBM Reuse Technology Support Cen-

ter, February 1992.

[2] R. Prieto-Diaz, \Reuse Library Process Model," Tech. Rep. AD-B157091, IBM CDRL 03041-

002, STARS, July 1991.

4 Biography

Kathryn P. Yglesias is an advisory systems analyst in the IBM Reuse Technology Support Center

where her work includes information model de�nition, classi�cation evolution, and requirements

de�nition for corporate standards and tools. She coordinated the IBM de�nition of formal methods

for reusing non-code work products, especially customer documentation. Her experiences include

engineering and project management for the Space Shuttle program and customer liaison for an

internal computer systems organization. She is a member of the AIAA and Society for Software

Quality.

Yglesias- 5


