
Criteria for Evaluating Reuse Support in Education Courses

Ben R. Whittle

Dept. of Computer Science, University of Wales, Aberystwyth,

Aberystwyth

Dyfed, Wales, UK

Tel: (+44) 970 622450

Fax: (+44) 970 622455

Email: brw@aber.ac.uk

Abstract

This position paper discusses the criteria that could be used to examine support techniques

for a reuse course based upon traditional lecturing principles. A prototype environment is de-

scribed that is being developed to support reuse courses at UW Aberystwyth. This development

is part of the larger TIPSE teaching environment project.

Keywords: Component Reuse, Component Description, Technology Transfer, Reuse Educa-

tion.

Workshop Goals: Attendance of the workshop will provide me with the opportunity to ascer-

tain and understand the state of the art in reuse research and practice. I will be able to bring

this knowledge to bear on my own research, the projects I am involved in, and report it to the

UK through the British Computer Society Special Interest Group on Reuse, who's newsletter

I edit. The workshop will give me a chance to explain and obtain feedback on the ideas in my

PhD thesis which has recently been submitted.

Working Groups: Design guidelines for reuse, Reuse and OO methods, Tools and environ-

ments, Education.

Whittle- 1



1 Background

The University of Wales, Aberystwyth (UWA) has a long record of reuse research including the

Alvey funded project ECLIPSE [1], and the European Esprit funded project DRAGON [2]. Part of

this work at UWA included that of Gautier, Ratcli�e and Shah on component description languages

[3, 4]. UWA involvement in environments research has been particularly in
uential in the formation

of a teaching environment project, the TIPSE [5, 6]. The work in my PhD thesis combines these two

�elds, looking at the design of an appropriate a component description language, which I call the

Component Interface DEscriptoR (CIDER), and an associated toolset that could be used as a way

of introducing students to the ideas of reuse. Rather than being an academics toy, this language,

based on the 3C model of the reusable component [7, 8, 9], provides an interesting insight into the

use of object-oriented software description for reuse.

In recent years, reuse education has become an important issue. At the 1992 Reuse Education

Workshop, Mosemann [10] made the comment that reuse education is:

one of our major hurd if reuse is to become common in the lifecycle of our systems.

In a similar way to reuse itself, two schools have developed; these can be termed `education with

reuse' and `education for reuse'. That is, should people be taught reuse as part of the existing

modules, or should reuse be taught separately. A lack of agreement on de�nitions and the turbulen

of an evolving discipline only add to this debate. The position presented in this paper stems from

ideas formulated during the development of a reuse technique suitable for both education with

reuse and education for reuse.

Rather than describe the development of the CIDER language and its environment, a subject that

will be covered in other academic publications, this position paper will be used to outline:

� a set of pragmatic guidelines for choosing techniques to be used in reuse education,

� the reasons why I think that a component description language and its associated environment

is particularly appropriate for this.

2 Position

2.1 Capturing Reuse Principles for Education

This section discusses the criteria that could be used to examine support techniques for a reuse

course based upon traditional lecturing principles. These criteria are summarised at the end of the

section.

In an educational environment specialising in the training of software engineers, it is important

to stress the underlying principles of programming over and above the practice and idiosyncrasy

of one language or method. These principles can be reinforced by practical use and experience

of example techniques. The example technique must transparently embody the principles of the

research. It would also be an advantage if the technique was widely used in practice and contained

state of the art research work

1

.

1

It is unlikely that a language that is widely used will contain recent research.

Whittle- 2



In industrial use a reuse language that is used as part of a design process or method must have

(Krueger [11]) as small a cognitive distance as possible. Cognitive distance is the amount of intel-

lectual e�ort that a software designer needs to understand a software system so that, for example,

it may be taken from one stage of development to the next. Cognitive distance is correlated to

the reusability of a component. The idea of understandability can also be applied to the descrip-

tion language itself, that is the language should itself present little problem for the student to

understand.

Having said that the principles of reuse are abstract, it is necessary to demonstrate these principles

through an exemplary concrete medium, in this case the reuse language. The area chosen to

demonstrate a technique should be complete or a conceptually complete subset of a larger model.

It should build on existing techniques, for example using the language with which the students are

most familiar. Students must be able to see that the technique is of use. To satisfy this latter goal

the technique should be appropriate for use within small projects. For example, a student should

be able to reuse components or groups of components using the technique and follow this through

to the implementation languages with which he is familiar.

Languages are an area that the student/engineer understands as most of their practical experience

will involve the use of programming languages that are used to `describe' or implement algorithms.

One could argue that a language based component description technique could be used to represent

software for reuse. Indeed the language used could be the same as that used in practical program-

ming exercises, however it is widely agreed that, as Cramer et al. state in [12], programming

languages are not suitable for component description for reuse.

In summary, the technique used to encourage reuse should:

� transparently embody the principles of reuse,

� ideally be widely used in practice and contain state of the art research work,

� not be at the implementation level,

� be easy to understand in itself,

� present a complete, workable system,

� relate to the students' other work, and thus demonstrate the applicability of reuse.

2.2 A Component Description Language & Environment as an Example of

Reuse

In this section I describe a prototype environment that is being developed to support reuse courses

at UW Aberystwyth. This development is part of the larger TIPSE teaching environment project.

The approach to reuse education proposed in this position statement is a traditional lecture course

backed up with practicals. I envisage a lecture course covering the key principles of reuse at di�erent

levels of the lifecycle, together with an explanation of the tools and techniques that can be used

to achieve this. This course would be applicable to advanced undergraduates, postgraduates and

could be collapsed into a one week intensive course for industry.

The component description environment will be used as the practical element of the course. This

gives the course participant the chance to use some of the tools and techniques, learning their use

Whittle- 3



�rst hand. The most important part of the environment is support for a design level language

for component description. Using the design level ensures that the student does not immediately

think of the reusable component as source code, but as a representation of an idea, and as a

relationship between a set of other ideas. Around this central reusable component representation

and it's associated editor, there are reuse tools allowing the reuser to browse, select and edit reusable

components in textual and graphical form. Finally there are a series of source code language editors

and translation programs allowing a mapping too and from the design level description.

Going back to the summary in the section above, we can see how the component description and

environment I have just described will provide a support for reuse education.

� transparently embody the principles of reuse. The principles of reuse are perhaps a

matter of philosophical debate. However the language I have brie
y introduced implements

the 3C model of the reusable component, and the environment contains tools which display

the key ideas of reuse, cataloging, browsing, selecting, and con�guring components.

� ideally be widely used in practice and contain state of the art research work. The

environment is extensible and can therefore contain both those tools and techniques widely

used in practice together with recent research.

� not be at the implementation level. The component language is at the design level.

� be easy to understand in itself. The component description language has been designed

to be orthogonal, with a relatively small set of constructs. Each language mechanism and

construct has a well de�ned syntax and distinct semantic purpose.

� present a complete, workable system. The combination of the component description

language with the environment tools gives a complete solution. The small scale of the toolset

insulates the student from the learning curve of larger industrial strength environments. The

environment has a similar look and feel to the support environment that the students will

have used on other courses.

� relate to the students' other work, and thus demonstrate the applicability of

reuse. The provision of the mapping programs enable a student to transfer the component

descriptions into implementation language scripts, in our case C++ and Ada. This translation

enables the student to relate the design level reuse work to source code in languages that they

know and understand. The ability to produce more than one language is an advantage, clearly

demonstrating that reuse is not language speci�c, and enabling students to see the relationship

between semantically similar mechanisms in di�erent languages.

3 Comparison

In the sections above I have presented my ideas for the evaluation of reuse course support material,

and suggested one approach to this problem, a component description language with a support

environment. In this section I will brie
y discuss some of the other approaches to reuse education.

A direct technical comparison is not possible as the approaches di�er in the method of teaching.

This comparison serves to highlight the di�erences between the approaches, and the reason for my

position.

The failure to adopt a widespread practice of software reuse must in part be attributed to the

educators. The education of tomorrows software engineers must tread a �ne line between educating

Whittle- 4



for the tools and skills of today, and enlightening and explaining the techniques of tomorrow.

Despite the large body of research into reuse and the large number of projects in this area (see

[13, section 1.3] for example), there is only evidence of a few entire course modules devoted to

reuse. For example, Gray [14] talks about a practical course, using Ada for reuse based software

engineering. However the majority of courses are for advanced students, such as the seminar

module run by Bill Frakes at the Software Engineering Guild. This is similar to the module at

the Norwegian Institute of Technology in Trondheim [15], resulting from their involvement in the

REBOOT project. Another is a nine lecture course module at the University of Durham, that

concerns Software Design and Reuse

2

. Other courses mention reuse, in passing, but with little

practice of the techniques. Whilst it is certain that the methods and models necessary to teach

reuse provide a wealth of available and acceptable material, see [16] for example, reuse course

modules do not exist. This is due, in part, to the lack of industrial acceptance of reuse, but must

surely be short sighted in educational terms.

The position taken here is that a traditional approach with lecture courses will be necessary in

some institutions and for industry, where the aim of the course is to relay information rather than

encourage debate. This lecture based approach will not be su�cient without a supporting base

of practical examples of reuse. These practical examples can be o�ered as part of an integarted

teaching environment, reducing the students learning curve and encouraging reuse as a standard

part of the programming experience.

One of the key arguements that many people raise against reuse education is that the reuse domain

is not yet mature or well enough de�ned to support this. I submit that at the level of detailed

design and component reuse, which has been developing for over 25 years, the domain is mature

enough to support a the development of a course in the fundamentals of reuse.

References

[1] M. F. Bott, ed., Eclipse | An Integrated Project Support Environment. Peter Pereginus,

Stevenage, England, 1989.

[2] A. DiMaio, C. Cardigno, R. Bayan, C. Destombes, and C. Atkinson, \DRAGOON | An Ada

based object-oriented language for concurrent, real time, distributed systems," in Proceedings

of Ada Europe Conference, Madrid, 1989.

[3] M. Ratcli�e, C. Wang, R. Gautier, and B. Whittle, \Dora | a structure oriented environment

generator," IEE BCS Software Engineering Journal, vol. 7, May 1992.

[4] I. Shah, Abstract Speci�cations & Programming Language Bindings. PhD thesis, University of

Wales, Aberystwyth, 1990.

[5] M. Ratcli�e, M. Bott, T. Stotter-Brooks, and B. Whittle, \The TIPSE: An IPSE for teaching,"

BCS/IEE Software Engineering Journal, vol. 7, September 1992.

[6] M. Ratcli�e, B. R. Whittle, M. Bott, and T. Stotter-Brooks, \The TIPSE: An educational

support environment," in The 11th Annual National Conference on Ada Technology, Williams-

burg, VA, pp. 97{111, March 15-18th 1993.

2

This description of Boldyre�'s course is taken from a news message in a summary to a request for reuse textbooks

posted by news@cybernet.cse.fau.edu on 12th February 1993

Whittle- 5



[7] W. Tracz, \The impact of domain analysis on software reuse," in First International Work-

shop on Software Reusability, Dortmund, Germany, Universit�at Dortmund SWT memo Nr.57,

pp. 180{186, 1991.

[8] W. Tracz, Formal Speci�cation of Parameterized Programs in LILEANNA. PhD thesis, Stan-

ford University, to appear, 4th draft 1992.

[9] L. Latour, T. Wheeler, and B. Frakes, \Descriptive and prescriptive aspects of the 3Cs model:

Seta1 working group summary," in Proceedings of the Third Annual Workshop, Methods and

tools for Reuse, CASE Centre Technical Report number 9014, Syracuse University, June 1990.

[10] L. Mosemann, \The reuse challenge: Education," in Proceedings of the Reuse Education Work-

shop, 23-24th September 1992, pp. 12{17, September 1992.

[11] C. Krueger, \Software reuse," ACM Computing Surveys, vol. 24, June 1992.

[12] J. Cramer, W. Fey, M. Goedicke, and M. Grobe-Rhode, \Towards a formally based component

description language | a foundation for reuse.," Structured Programming, vol. 12, pp. 91{110,

1991.

[13] J. Hooper and R. Chester, Software Reuse: Guidelines and Methods. Plenum Press, 1991.

[14] J. Gray, \Teaching the second computer science course in a Reuse based setting," in The 11th

Annual National Conference on Ada Technology, Williamsburg, VA, pp. 38{45, March 15-18th

1993.

[15] G. Sindre, E.-A. Karlsson, and T. S. lhane, \Software reuse in an educational perspective,"

in Proceedings of the 6th International Conference on Software Engineering Education, San

Diego, 5{7 Oct., Springer Verlag, 1992.

[16] F. VanScoy, \Software reuse in computer science courses, working group summary," in Pro-

ceedings of the Reuse Education Workshop, 23-24th September 1992, pp. 21{29, September

1992.

[17] R. Prieto-Diaz, W. Sch�afer, J. Cramer, and S. Wolf, eds., First International Workshop on

Software Reusability, Dortmund, Germany, Universit�at Dortmund SWT memo Nr.57, June

3-5th 1991.

[18] C. Lillie, \Proceedings of the reuse education workshop, 23-24th september 1992," tech. rep.,

West Virginia University, January 27th 1993.

4 Biography

Ben Whittle graduated in Agricultural Economics from UW Aberystwyth in 1989. He subse-

quently completed a masters in Computer Science and was invited to proceed to research for a

PhD in Software Engineering. Foremost among Mr Whittle's research interests are component

reuse and reuse education, these subject provide the basis of his recently submitted PhD thesis. He

is also interested in teaching support, and has been active in the development of the Aberystwyth

teaching environment, the TIPSE. Mr Whittle is a member of the British Computer Society Reuse

special interest group committee and the editor of the group newsletter.

Whittle- 6


