
Incremental Adoption of Software Architecture Technology for

Reuse in the DoD

�

Kurt C. Wallnau

Paramax Systems Corp.

1401 Country Club Road

Fairmont, WV 26554

Tel: (304) 363-1857

Email: wallnau@cards.com

Abstract

Technologically sound and scaleable results of research into software architectures and their

representations are beginning to emerge. However, the adoption of these results to support

a global DoD reuse strategy is complicated by the business and organizational complexity of

the DoD. Architecture-based reuse technology adoption must occur independently within nu-

merous semi-autonomous product development centers in the DoD and within DoD contractor

organizations. This adoption must support a gradual convergence to a common architecture rep-

resentation technology from widely divergent starting points. This paper describes the use of a

library of shared software architecture ontologies to support: local architecture representation

technology autonomy; evolutionary adoption of common architecture representation technolo-

gies; and evolutionary development of representation-independent domain architectures from

product-line architectures.

Keywords: Software reuse; software architectures; architecture description languages; shared

ontologies.

Workshop Goals: Learn and share ideas about: design-level reuse; the impact of reusable

design representation on DoD reuse and software procurement policies; and technology implica-

tions of organizational complexity on design reuse.

WorkingGroups: Reuse management, organization and economics; Domain analysis/engineering;

Design-level, model-oriented reuse.

�

The views expressed in this position paper are those of the author and do not necessarily reect the views of

Paramax, the CARDS program, or its government spon ors.

Wallnau- 1

1 Background

The need for a disciplined, principled approach to software architectures is as crucial to the DoD

Software Reuse Vision and Strategy[1] as the study of software architectures is broad and multi-

disciplined. This need, when coupled with the continual advances in a newly-emerging �eld of

software architectonics

1

, requires programs such as CARDS to play an active role in accelerating

technology transfer of DoD-sponsored architectonics research e�orts (such as the ARPA/DSSA

program) into practice.

The Central Archive for Reusable Defense Software (CARDS) is a DoD-sponsored program char-

tered to transition into practice the technology, processes and business practices necessary to in-

stitutionalize domain-speci�c, architecture-based, library-assisted software reuse [2]. The concepts

and implementation of the CARDS Command Center Library reects this accelerated technology

transition. The explicit representation of software architectures as the principle organizing frame-

work within the Command Center Library, and the tools which manipulate these architecture

models[3], represents the link between the theory and practice of architectonics.

2 Position

CARDS has had some success in representing software architectures in a reuse library framework.

However, to achieve our desired technology transfer objectives and to meet our customer's needs

we must �rst understand the nature of the organizations we are dealing with. We recognize two

distinct organizational dimensions which must be addressed if we are to achieve (and, possibly,

sustain) domain-speci�c reuse in the DoD. Both dimensions (illustrated in Figure 1) must evolve

in cooperation to achieve an evolution from distributed, autonomous product centers to a planned,

managed and systematic domain-speci�c reuse capability of DoD magnitude.

To support this evolution two di�erent kinds of software architecture representations are needed|

one which captures detailed, technology- and representation-dependent designs (i.e., product-line

architectures), and one which provides information-rich but technology-neutral correlations among

product-line architectures (i.e., domain architectures). Current research is already addressing the

former; CARDS is developing an ontology-based representation scheme to address the latter.

Section 2.1 elaborates Figure 1 and discusses the architecture representation requirements of product-

line and domain organizations. Section 2.2 describes an ontological approach supporting the do-

main perspective. This represents new and unique work as product-line architecture representation

technology is already being addressed by current research.

2.1 Architectures for two Organizational Perspectives: Into the Thickets

Architecture Representation for the Product-Line Organizations

The product-line organizations exist today, and support speci�c DoD missions within speci�c ap-

plication areas (for example, multiple product centers for Command and Control applications exist

in the DoD). Each such organization may operate, maintain, evolve and procure new systems as

1

Architectonics: the study of architectures.

Wallnau- 2

domain
view

DoD

Product

Centers

product
line
architectures

Domain
Architecture

product
line
view

Systems in
operation,
maintenance,
evolution and
development

Figure 1: Product Line and Domain Organization Perspectives

part of the normal incremental evolution and accretion of DoD software systems. It is important

to note that there are literally hundreds of product-line organiation within the DoD.

Organizational and technological diversity characterize the various product centers. Detailed ex-

pertise relative to speci�c products and customers has been developed within each product center.

Lacking a shared domain model, the terminology, concepts and approaches used by these orga-

nizations varies tremendously. Thus, independent of development environment technology (which

includes the use of software architecture representation technology) there is a high-degree of concep-

tual impedance mismatch among various product centers' perceptions of the application domain.

To complicate matters further there is also great variety in the DoD contractors which are used to

support product-line maintenance and development, the roles they play in the product-line, and

the technology and processes they use internally (even within the scope of DoD-STD-2167a) to

accomplish their objectives. This both reects and induces a large measure of technology diversity

among the product centers. For example, development environment tooling may be strongly inu-

enced by the preferences and use of commercially-available and proprietary software development

tools and processes by contractors.

The need to support product-center diversity in technology and procurement is reected in recent

descriptions of the role of software architectures in the DoD software procurement process[4]

2

. To

support this diversity, any one of a number of commercial (and research)-o�-the-shelf architecture

description languages (ADLs) and toolsets might be used|the author certainly claims no special

expertise in making recommendations about which ADL to use.

2

Actually, Saunders does not explicitly tie the concepts in his paper to product centers rather than domain centers.

However, applying the concepts discussed in his paper in the current DoD organizational context|one which does

not have a strong domain management function|will result in product-line diversity as indicated in this paper.

Wallnau- 3

Architecture Representation for the Domain Organization

Given the diversity of product-line speci�c terminology, application concepts, development and

target-environment capabilities and approaches to software architectures, how will it be possible to

evolve a coherent domain architecture?

The domain organization, which does not currently exist (although plans for developing domain

centers do exist) will not have the luxury of de�ning, from \scratch," all-encompassing domain

architectures|i.e., generalizations and uni�cations of the multiple product-line architectures. In-

stead, domain-speci�c architectures will have to evolve to accommodate the various product-line

architectures because: all of the DoD's software can not be re-written at once; new systems (based

on domain architectures) will need to interoperate with existing systems (based on product-line

architectures), and; applications will continue to be procured on an application-by-application ba-

sis for the forseeable future (irrespective of the acclaimed role of domain analysis in achieving

domain-speci�c reuse).

One approach is to develop detailed, domain-speci�c technical reference models. Reference models,

such as described in [5], can provide a wealth of information about interface standards, conventions,

assumptions, and usage models for applications; they can be used to support the procurement of

systems (or parts of systems) which adhere to some explicit implementation characteristics. In fact,

the CARDS-de�ned component quali�cation process makes use of a technical reference model (of

command center functional components) to evaluate the \form, �t and function" of components

relative to domain-speci�c conventions and requirements.

However, technical reference models, though useful, are no substitute for software architectures.

Architectures describe speci�c characteristics of systems

3

, including: component interconnections,

data and control ow, throughput, timing and scheduling, fault-tolerance and security (to name a

very few). Which characteristics are described, the form in which they are described, and the level

of detail associated with their descriptions will vary across application areas (embedded avionics

will di�er from information management), product centers and systems within product centers.

There are several possible approaches to managing product-line developed architectures within a

domain organization. First, the domain organization could acquire the union of ADL processors

and maintain the product line architectures independently|this is a useless option. Second, the

organization could invent or adopt a general, all-encompassing \doomsday" ADL, one which could

adequately express all of the characteristics described by all of the ADLs in use across all of the

DoD domains|don't hold your breath. Third, should no viable approach to managing architecture-

representation diversity emerge, the domain management organization could focus primarily on

technical reference models; however, this would represent a setback for domain speci�c reuse within

the DoD.

None of the above options are palatable. The next section describes a more practical and exible

approach.

2.2 An Ontological Approach to ADL Adoption: Out of the Woods

Rather than wait for the doomsday ADL, a more exible approach is to describe, in a formal model,

speci�c characteristics of software architectures and then map product-line software architectures

3

It should be noted that some reference models masquerade as software architectures, while some software archi-

tectures masquerade as reference models: both disguises can introduce serious problems.

Wallnau- 4

based direction synchrony

procedure
based

message
based

event
based

uni-directional

bi-directional

synchronous

asynchronous

buffered

unbuffered

buffering

architecture

module

configuration-

load
image

connection

components

interaction implies
1..n

has
1..n

to
1..n from

0..n

Is-A

Has-A

elements

Figure 2: Ontology Fragment in Term Classi�er Representation

into this formal model. This formal model would describe the elements and relationships of the

concepts which underly the representation of software architectures|not the details of speci�c

system architectures.

Describing such a formal model as a meta-model for software architectures would be accurate but

not su�ciently descriptive. This meta-model would model a theory of software architectures, facili-

tate sharing and exchange (i.e., reuse) of design knowledge (i.e., software architectures and designs)

across di�erent technology bases (i.e., product center design tools) and di�erent product lines. Such

a meta-model would in fact be an ontology

4

of (characteristics of) software architectures[6].

A reuse library which de�ned, and was organized around, one or more ontologies

5

could provide

numerous encyclopedic reuse services:

� model and relate idiomatic architecture patterns such as those identi�ed by Shaw and Garlan[7],

and model (in the same formalism) actual systems as re�nements/specializations of these id-

ioms to support analysis of single systems and comparison of multiple systems.

� model the abstractions and semantics of speci�c architecture/design representation systems

so that tool-speci�c semantics can, at least in a limited form, be normalized with respect to

explicitly-de�ned, shared principles.

� relate, through formal term classi�cation, various idiosyncratic vocabularies used to describe

common domain \concepts."

4

Ontology: a particular theory about the nature of being or the kinds of existents. (Webster's Ninth New Collegiate

Dictionary. More thorough de�nitions may be found in AI literature.)

5

For pragmatic issues related to the design of good ontologies it may be more convenient to de�ne several small

intersecting ontologies than to de�ne one large ontology.

Wallnau- 5

Such a reuse library might appear to be overly-visionary, but in fact such libraries are within reach.

The reuse library framework employed by the CARDS program| RLF[8]|makes use of a term

classi�cation knowledge-representation formalism derived from KL-ONE[9]. As such, the system

provides a limited but useful (certainly for the near-term) capability for describing architecture

ontologies. A trivial fragment of an ontology for software architectures

6

which might appear in a

CARDS library is provided in Figure 2. The reader should be able to see how some of the archi-

tectural idioms described by Shaw, such as pipes and �lters, can be represented as specializations

of components, connections and interactions.

2.3 Summary: What's Real and What's Next

The CARDS program has developed an architecture-based reuse library for Command Centers. The

library makes use of a formally-encoded generic command center architecture (GCCA), encoded

in a knowledge-representation scheme derived from KL-ONE. The encoded software architecture

supports two automated reuse assistants. One, the system composer, uses the encoded GCCA to

guide library users through an interactive architecture re�nement process to compose portions of

the GCCA (related to message processing); over twenty compositions are possible, with several of

these resulting in executable load images. A second tool, the component quali�er, uses the encoded

GCCA to guide library administrators in an architecture-tailored component quali�cation

7

process.

The CARDS program does not currently employ an architecture ontology. That is, we encoded

the GCCA through the use of informal modeling conventions. As a result, although we have

developed impressive demonstration capabilities for model-based reuse libraries, these capabilities

are somewhat sensitive to the particular form of the architecture as represented in the library

model. CARDS is undertaking a kind of domain analysis (using Simos' Organizational Domain

Modeling approach[10]) on the �eld of software architectures. Our intention is to develop a \starter

ontology" as a result of this work that will allow us to generalize the composition and quali�cation

tools, make more systematic the development of CARDS reuse libraries by CARDS franchisees,

and provide a basis for evolving the domain perspective illustrated in Figure 1. As the space of

possible of design notations is immense[11] the scope of the CARDS e�orts will be de�ned relative

to a limited number of reuse services provided by CARDS libraries; the more general discipline of

\ontological architectonics" will need to be elaborated elsewhere.

3 Comparison

3.1 ARPA Domain Speci�c Software Architectures (DSSA)

A number of concepts being explored by the DSSA program are consistent with (and in some cases

provided the basis for) CARDS concepts. The notion of a domain-speci�c reference architecture

and tool support for the re�nement of this architecture to support speci�c application needs is a

direct analogue to the CARDS GCCA encoding and system composer. The notion of distinguishing

between domain engineering and application engineering functions is also shared between DSSA

and CARDS. The system composition capabilities[12] and type expression formalisms[13] of the

6

The example illustrates only a fragment of an ontology; it is not clear that this is even an \interesting" ontology.

7

We use the term \quali�cation" to avoid confusion with more widely known (but not better understood!) term,

\certi�cation."

Wallnau- 6

DSSA/ADAGE system have many concepts related to the CARDS composition and modeling

formalism; however, more detailed description de�es brief summary.

There are some interesting di�erences as well. First, DSSA is chartered to undertake domain

analysis and architecture de�nition e�orts in several domains. CARDS, on the other hand, is

not chartered to undertake domain analysis e�orts, but must instead seek out partnerships with

product centers in the DoD (a.k.a. franchises) and encourage and support them in domain analysis,

architecture recovery, and/or architecture de�nition. Second, DSSA is in the process of de�ning

a consensus ADL. CARDS, as already mentioned, is more interested in capturing and modeling

the principles which underlie whatever ADL(s) DSSA converges upon. Last, DSSA is addressing

a broad array of system and software development issues, while the CARDS technology e�ort is

more narrowly focused on supporting architecture-based, library-assisted software reuse.

3.2 NASA/KAPTUR

The notion of case-based reuse supported by KAPTUR represents a similar view of incrementally

evolving a domain knowledge base from a series of speci�c application instances, as illustrated

in Figure 1. The KAPTUR system also provides a number of distinct architectural views of

systems|this is a capability which is currently under development for CARDS libraries (in fact, the

integration of KAPTUR or some of its subsystems with RLF is being investigated by the STARS

program to provide the Army demonstration project technology support for ODM[10]).

The fundamental di�erences between KAPTUR and the CARDS e�ort|and these di�erences may

narrow as RLF/KAPTUR integration is explored and implemented, concerns the use of the library

toolset to support interactive architecture re�nement and system composition. In KAPTUR the

purpose of maintaining architecture cases is to support the cognitive aspects of selecting among

design alternatives; in CARDS one purpose of encoding the GCCA was to support library-assisted

(i.e., semi-automated) composition of systems.

3.3 ARPA Knowledge Sharing Initiative (KSI)

The Knowledge Sharing Initiative is exploring the use of ontologies to specify content-speci�c

speci�cations shared among autonomous reasoning agents. The goal is to \enable libraries of

reusable components and knowledge-based services that can be invoked over networks[6]." This

e�ort is clearly relevant to the development of software architecture ontologies in support of the

correlation and exchange of design information developed by semi-autonomous product centers

(again, refer to Figure 1).

One signi�cant di�erence in approach is that KSI ontology speci�cations represent multi-lateral

knowledge sharing agreements among reasoning agents; in CARDS, the ontology is uni-lateral and

is intended (at least in the near-term) to support systematic description e�orts to support library

assisted reuse. That is, the ontology is not intended to support independently-developed library

assistance tooling.

References

[1] DoD, \DoD Software Reuse Vision and Strategy," Tech. Rep. DISA 1222-04-210/40, Depart-

Wallnau- 7

ment of Defense, 1992.

[2] K. Wallnau, \Cards overview," CROSSTalk, The Journal of Defense Software Engineering,

no. 32, 1992.

[3] K. Wallnau, \Towards and Extended View of Reuse Libraries," in Proceedings of the 5th

International Workshop on Software Reuse, 1992.

[4] T. Saunders, B. Horowitz, and M. Mleziva, \A New Process for Acquiring Software Architec-

ture," Tech. Rep. M 92B0000126, MITRE, 1992.

[5] NIST, \Reference Model for Frameworks of Software Engineering Environments," Tech. Rep.

NIST Special Publication 500-201, ECMA TR/55, 2nd Edition, ECMA, 1991.

[6] T. Gruber, \Toward principles for the design of ontologies used in knowledge sharing," Tech.

Rep. Unpublished Technical Report, Stanford Knowledge Systems Laboratory, 1993.

[7] D. G. M. Shaw, \An Introduction to Software Architecture," Advances in Software Engineering

and Knowledge Engineering, vol. 1, 1993.

[8] K. W. J.J. Solderitsch, J.Thalhamer, \Construction of Domain-Speci�c Reuse Libraries," in

Proceedings of Seventh Annual National Conference on Ada Technology, 1988.

[9] J. S. R.J. Brachman, \An Overview of the KL-ONE Knowledge Representation System,"

Cognitive Science, vol. 9, no. 2, pp. 171{216, 1985.

[10] M. Simos, \An Introduction to Organizational Domain Modelling: A Domain Analysis process

Model," in Proceedings of the International Workshop on Software Reuse, Pisa, Italy, 1993.

[11] D. Webster, \Mapping the Design Information Representation Terrain," IEEE Computer,

December 1986.

[12] D. Batory, \A Process and Retrospection on Creating a Domain Model for Avionic Software,"

Tech. Rep. ADAGE-UT-93-04, Department of Computer Science, University of Texas, Austin,

1993.

[13] D. Batory, \le: A Type Expression Language," Tech. Rep. ADAGE-UT-93-02, Department of

Computer Science, University of Texas, Austin, 1993.

4 Biography

Kurt C. Wallnau is a research scientist for Paramax Systems Corporation. He currently is system

architect for the CARDS program, an Air Force program in domain-speci�c reuse. Prior to the

CARDS program, Mr. Wallnau was a member of the technical sta� at the Software Engineering In-

stitute, where he performed research in the area of software development environments, speci�cally

in the area of environment integration. Before that, Mr. Wallnau was chief programmer of various

STARS tasks, including interface standards and user interface systems. Mr. Wallnau was one of

the principal designers and developers of the RLF, a knowledge-based reuse library framework, also

developed by the STARS program.

Wallnau- 8

