
Design Records: A Way to Organize Domain Knowledge

Will Tracz { Steve Shafer { Lou Coglianese

IBM Federal Systems Company

MD 0210, Owego, NY 13827

Tel: (607) 751-2169, fax: (607) 751-6025

Email: tracz@vnet.ibm.com

Abstract

This document describes the Design Records being developed as part of the Domain-

Speci�c Software Architecture Avionics Domain Application Generation Environment (DSSA-

ADAGE) Project

1

. A design record aids in the generation of new avionics applications as well

as the maintenance of existing systems built using ADAGE. The purpose of a design record is

to serve as a vehicle for software understanding by functioning as a collection point for domain-

speci�c knowledge about the components that make up a Domain-Speci�c Software Architecture

(DSSA),

There are three kinds of design records used by ADAGE to describe the avionics software

architecture and components [1, 2].

1. Domain Model Design Record de�nes a collection of realms

2

,

2. Realm Design Record de�nes the interface for a collection of components, and

3. ComponentDesignRecord represents an (alternative) implementationor design choice.

Keywords:Domain Analysis, Knowledge Representation, Software Reuse.

Workshop Goals: Facilitate the technical interchange of ideas and experience related to the

development and use of software components.

Working Groups: Knowledge Representation, Design for Reuse.

1

This e�ort is sponsored by the US Department of Defense Advanced Research Projects Agency in cooperation

with the US Air Force Wright Laboratory Avionics Directorate under contract F33615-91-C-1788.

2

See Batory's [3, 4] for a detailed treatment of creating layered designs using realms and type expressions.

Tracz- 1



1 Background

IBM FSC as part of ARPA Domain-Speci�c Software Architecture Program has been actively

pursueing the developement of tools and processes to support the generation and application of

software architectures. One of the major focusses of this e�ort has been the creation of a \design

record". The purpose of a design record is to serve as a vehicle for software understanding by

functioning as a collection point for domain-speci�c knowledge about the components that make

up a Domain-Speci�c Software Architecture (DSSA). ADAGE design records play a central role in

1) describing the avionics domain-speci�c software architecture and 2) integrating the tools that

comprise the ADAGE environment.

Two points merit distinction in their bearing on the design record:

1. the contents of the ADAGE Component Design Record (i.e., its \data elements") are

patterned after those initially proposed by Bill Scherlis in [5].

2. While a design record serves as a collection point for:

� domain-speci�c knowledge about components or design alternatives and

� implementation-speci�c knowledge about alternate implementations,

it does not provide information about their application, instantiation, or con�guration. This

type of information, though similar in nature, is part of an application's design history.

2 Position

The goal of a design record is to adequately describe a domain-speci�c software architecture and

its software software components such that design decisions and component selections can be ac-

complished without looking at implementations.

Asset capture and re-capture is supported in ADAGE by the design record, hypermedia browsing

capability, and the domain engineering process [6]. The design record provides a \common data

structure for system documentation and libraries [5]".

The basic design record data elements, as proposed by Scherlis and arranged according to phases

in the software life cycle, include:

1. name/type,

2. description,

3. requirement speci�cation fragments,

4. design structure,

5. design rationale,

6. interface and architecture speci�cations and dependencies,

7. PDL texts,

8. code,

9. con�guration and version data, and

10. test cases.

In addition to the \primary" lifecycle elements listed above, the following \secondary" ele-

ments aide in the (re-)use of the components by capturing additional information:

Tracz- 2



11. metric data,

12. access rights,

13. search points,

14. catalog information,

15. library and DSSA links, and

16. hypertext paths.

For the avionics domain, the ADAGE design records contain the basic data items listed

above (with some domain-speci�c clari�cations) in addition to some DSSA-ADAGE speci�c

items including:

17. models

18. constrants, and

19. data quality.

The reader should note that because the design record is a dynamic entity in that its contents

grow as a component goes through the various stages in the software development life cycle, all

component design records do not contain the same amounts of information. In addition, certain

design record elements may \inherit" values for other records they may be associated with (e.g., a

realm component design record inherits the constraints of the realm it is a member of).

2.1 Types of Design Records

The goal of design records are to organize information associated with a domain-speci�c software

architecture. There are three kinds of design records used by ADAGE to describe the avionics

domain software architecture and components [1, 2]:

1. Domain Model Design Record de�nes a collection of realms,

2. Realm Design Record de�nes the interface for a collection of components, and

3. Component Design Record represents an (alternative) implementation or design choice.

The \component interface" found in a Realm Design Record includes not only the entry points,

type de�nitions and data formats (e.g., Ada package speci�cation), but a description of its function-

ality, side e�ects, performance expectations, degree and kind of assurance of consistency between

speci�cation and implementation (reliability), and appropriate test cases.

2.1.1 Domain Model Design Record

TheDomain Model Design Record de�nes a collection of realms. These show up as a list in the

library and DSSA links element of the design record. The Domain Model Design Record

has, as a minimum: a name, a description, and an interface/architecture speci�cation, as well as

a collection of administrative information (e.g., version number, catalog information, access rights,

etc.).

2.1.2 Realm Design Record

The Realm Design Record de�nes the interface for a collection of components. These show up

as a list in the library and DSSA links element of the design record. A Realm Design Record

Tracz- 3



de�nes either design decision or options (e.g., a list of sensors to choose from), or implementation

alternatives (e.g., a list of stack implementations).

2.1.3 Component Design Record

The Component Design Record may be used to describe three kinds of components:

1. Domain Speci�c { map into problem space,

2. Implementation Speci�c { map into solution space, and

3. Domain Independent { general components that may be used in other domains.

Component Design Records normally have some sort of execution capability. This can take the form

of an Ada package speci�cation and body, an executable SEDL speci�cation, or a parameterized

LILEANNA make statement indicating how such a component could be constructed.

2.2 Design Record Creation

As part of the domain engineering process described in [6], a Component Design Record is

created for each component in DSSA. As the DSSA reference architecture is con�gured and extended

to meet the requirements of a new application using the Architecture-Based Development Process

[7], additional information is recorded as part of a Design History Record (i.e., con�guration

data and design decision rationale). In addition, new design records are generated to account for

extensions to the architecture, addition of components with unprecedented functionality, or new

implementations of existing components.

2.3 Design Record Evolution

Each generic component in the avionics DSSA has a design record with pointers to instances of

the design record (via the DSSA link data element). The design history records for instances

of components \inherit" the elements of the generic while specializing those that are application

speci�c. In particular:

� con�guration and version data indicate parametric values used to instantiate the com-

ponent and

� design rationale describe the reasons for their selection.

The resulting chain or information web is what has been called the \Design History" in ADAGE

[8].

3 Design Record Comparisons

This section compares the ADAGE design record data elements to the reusable software component

information proposed by STARS (Software Technology for Adaptable, Reliable Systems), ASSET

(Asset Source for Software Engineering Technology), RIG (Reuse Interoperability Group), and

IBM's internal reuse repository.

Tracz- 4



3.1 STARS Comparison

According to the STARS Reuse Concept of Operations, Volume I [9], the following asset

information \may be required for asset acceptance:"

� abstract,

� author/ownership information,

� author certi�cate of originality,

� copyrights/patents,

� distribution rights,

� distribution restrictions,

� liability statements for use/misuse,

� maintenance agreements,

� environmental dependencies, and

� dependencies on other assets.

The ADAGE design record completely supports the inclusion of this information.

3.2 ASSET Comparison

According to the ASSET Submittal Guidelines [10], the following documentation is recom-

mended for asset acceptance into the ASSET Repository:

� \an abstract,

� a user's guide or instructions on how to use,

� a list of �les making up the asset (preferably in compilation order),

� installation/implementation instructions,

� sample input/output,

� design and/or requirements documents,

� test programs, procedures an/or results,

� description of the environment under which the asset was developed/tested,

� known limitations of the software,

� a list of tools needed to interpret or used the asset,

� warranties or disclaimers,

� statement of distribution rights/licenses, and

� list of special formats of �les (e.g., Postscript, InterLeaf, SGML)."

The ADAGE design record completely supports the inclusion of this information.

3.3 RIG Comparison

The Reuse Interoperability Group (RIG), a defacto standards organization, whose goal is to facili-

tate cross reuse repository information exchange, in A Basic Interoperability Data Model for

Reuse Libraries [11] identi�ed the following subset of the \Uniform Data Model", which de�nes

the minimal set of information that reuse libraries should be able to exchange about assets in order

to interoperate:

Tracz- 5



� abstract,

� address of contributor/owner,

� cost/fee to use

�

,

� date of information,

� distribution statement,

� domain,

� element type (e.g., code, test suite, make �le),

� email address where asset resides

�

,

� fax # where asset resides

�

,

� identi�cation number

�

,

� keywords,

� language,

� Media asset is obtainable in

�

,

� name,

� restrictions (e.g., legal),

� security/classi�cation,

� target environment,

� telephone # where asset resides

�

,

� unique identi�er

�

,

� version, and

� version date.

This Basis Interoperability Data Model (BIDM) is derived from the Common Data Model de-

�ned in the Asset Library Open Architecture Framework (ALOAF) [12] and the STARS Repository

Guidelines and Standards [13].

With the exception of those items indicated with an \

�

", the ADAGE design record supports the

inclusion of the RIG local \attributes" for component classes.

3.4 IBM Corporate Reuse Environment (CRE) Comparison

IBM's internal use only software reuse tool, CRE (Corporate Reuse Environment) is a sophisticated

repository of tools for managing libraries of reusable software components. The \Software Element

Types" required for entry into the repository include:

� abstract,

� change history,

� dependencies,

� design,

� interfaces,

� legal,

� load module,

� metrics,

� miscellaneous project information,

� object module,

� performance analysis,

Tracz- 6



� product documentation,

� references to other documents or components,

� requirements for use and adaptation,

� restrictions and side-e�ects,

� reuse,

� sample use,

� source code,

� speci�cation (formal),

� test materials,

� usage information, and

� variations:

References

[1] S. Shafer and L. Coglianese, \Avionics Type Expressions: Realm De�nitions and an Exam-

ple System," Tech. Rep. ADAGE-IBM-93-07, IBM Federal Systems Company, April 1993.

Preliminary Version.

[2] D. Batory, \A Domain Model for Avionics Software," Tech. Rep. ADAGE-UT-93-03, Univer-

sity of Texas at Austin, May 1993.

[3] D. Batory and et al., \GENESIS: An Extensible Database Management System," IEEE Trans-

actions on Software Engineering, March 1986.

[4] D. Batory and S. O'Malley, \The Design and Implementation of Hierarchical Software Sys-

tems," Tech. Rep. TR-91-22, University of Texas, 1991.

[5] W. Scherlis, \DARPA Software Technology Plan," in Proceedings of ISTO Software Technology

Community Meeting, June 27-29 1990.

[6] W. Tracz and L. Coglianese, \DSSA Engineering Process Guidelines," Tech. Rep. ADAGE-

IBM-92-02A, IBM Federal Systems Company, December 1992.

[7] L. Coglianese and W. Tracz, \Architecture-Based Development Process Guidelines for Avionics

Software," Tech. Rep. ADAGE-IBM-92-02, IBM Federal Systems Company, December 1992.

[8] W. Tracz and L. Coglianese, \DSSA-ADAGEOperational Scenarios and System Vision," Tech.

Rep. ADAGE-IBM-92-01B, IBM Federal Systems Company, April 1992.

[9] \STARS Reuse Concepts Volume I { Conceptual Framework for Reuse Processes," Tech. Rep.

STARS-TC-04040/001/00, The Boeing Company, IBM FSC, and Paramax Systems Corp.,

February 1992.

[10] \ASSET Submittal Guidelines Version 1.0," Tech. Rep. SAIC-92/7625&00, Asset Source for

Software Engineering Technology and IBM FSC, December 1992.

[11] R. T. C. . (TC2), \A Basic Interoperability Data Model for Reuse Libraries," Tech. Rep.

SDS-0001 v.2, Reuse Library Interoperability Group (RIG), February 1993.

[12] \Asset Library Open Architecture Framework," Tech. Rep. Contract No. F19628-88-D0031,

Publication No. GR-07670-1317, Boeing Company, IBM FSC, and Unisys Defense Systems,

Inc., April 1992.

Tracz- 7



[13] \Repository Guidelines & Standards for the STARS Contract," Tech. Rep. Contract No.

F19628-88-D-0032, CDRL No. 0460, IBM System Integration Division, March 1989.

4 Biography

Will Tracz is a senior programmer at the Owego Laboratory of the IBM Federal Systems Company

where he is currently a DARPA PI (Principal Investigator) on the DSSA-ADAGE Project. He is a

member of IBM Corporate Reuse Council and IBM FSC Reuse Steering Committee as well as editor

of the IBM Corporate Programming Reuse Newsletter and column editor for IEEE Computer. His

book, Software Reuse: Emerging Technology, published (1988) by IEEE Computer Society Press,

paints a broad picture of the technical, economic, pedagogical and social issues facing the transfer

of software reuse technology into the workplace.

Tracz- 8


