
A Scalable Approach to Software Libraries

Je� Thomas, Don Batory, Vivek Singhal, and Marty Sirkin

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712

Tel: (512) 471-9711/9713

Email: fjthomas,batory,singhal,martyg@cs.utexas.edu

Abstract

Software libraries o�er a convenient and accessible means to achieve the bene�ts of reuse. The

components of these libraries are written by hand, and each represents a unique combination of

features that distinguishes it from other components. Unfortunately, as the number of features

grows, the size of these libraries grows exponentially, making them unscalable.

Predator is a research project to develop abstractions and tools to provide the bene�ts of

software libraries without incurring the scalability disadvantages just mentioned. Our approach

relies on a careful analysis of an application domain to arrive at appropriate high-level abstrac-

tions, standardized (i.e., plug-compatible) interfaces, and layered decompositions. Predator

provides language extensions for implementing components, and compilers to automatically

convert component compositions into e�cient programs.

Keywords: Predator, GenVoca, domain analysis, containers, software libraries, software reuse,

compositional reuse, generative reuse, feature combinatorics.

Workshop Goals: feedback on our work; exposure to other important work in software reuse.

Working Groups: reuse process models; reuse terminology standards; domain analysis /

engineering; design guidelines for reuse{general, Ada, and C++; reuse and OO methods; tools

and environments.

Thomas- 1

1 Introduction

Domain-speci�c software libraries are becoming an increasingly common means of rapidly building

software systems. Such libraries o�er numerous software components that implement di�erent

algorithms from a given problem domain. For example, consider the domain of data structure

algorithms (i.e., containers of objects). Examples include linked lists, arrays, trees, and hash

tables. Because each of these structures could be implemented using a variety of algorithms, the

domain of data structures is clearly quite large. The FSF's libg++ class library [1] and the C++

Booch Components [2] are examples of data structure software libraries.

Although software libraries o�er a simple and e�ective means of attaining the bene�ts of reuse,

they also expose a basic obstacle that limits the long-term success of software libraries as a reuse

paradigm. The Booch Components o�ers numerous implementations for each basic data structure;

for example, it provides 3� 3� 2 = 18 varieties of deques (double-ended queues)! A developer can

choose a deque's algorithm for concurrency control (sequential, guarded, synchronized), memory

allocation (bounded, unbounded, dynamic), and priority (ordered, unordered). Each of these fea-

ture selections is mutually independent; consequently, the implementor of the component library

must laboriously enumerate every permutation of feature selections.

As the number of available features increases, the size of component libraries grows exponentially.

For example, suppose a new feature were added which let a library user choose if the elements

of a deque should be stored in persistent memory or transient memory; the number of deque

components would then double from eighteen to thirty-six. It is apparent that as domain-speci�c

software libraries achieve broader use, they will need to support an even broader range of features,

thus aggravating this problem of feature combinatorics.

Feature combinatorics is a serious problem. Consider the following disadvantages for the library

implementor:

� Library growth can be explosive.

� Library maintenance is complicated by the large number of components.

� Code repetition is a nightmare that inheritance alone cannot solve.

And the following disadvantages for the library user:

� If the library implementor is unable/unwilling to supply components that enumerate every

permutation of features, then it is likely that some application will eventually need a particular

combination of features which isn't implemented by any component.

� Searching for the appropriate component is di�cult when the size of the library is large.

This problem of feature combinatorics is not unique to data structures. Twenty-�ve years ago,

McIlroy [3] postulated that a well-stocked library of sine routines would likely contain as many

as 300 components, supporting di�erent degrees of precision, granularity, range, and robustness.

Krueger recognized that the problem of feature combinatorics is, unfortunately, inherent to all

libraries [4]. Clearly, we must �nd a means of populating libraries of software components which is

scalable with respect to the number of features o�ered by the library.

Thomas- 2

2 Predator

The Predator system is based on the idea that data structures should be mechanically generated

from libraries of primitive components, where each component implements precisely one feature.

Users specify the set of features that they want, and Predator synthesizes the target data structure.

This approach eliminates the implementation and maintenance problems of feature combinatorics,

and is scalable by just adding new primitives to the Predator library.

In program generation systems like Predator, careful design and implementation of components is

critical. The interfaces of components should reect the basic abstractions of the domain. Such

interfaces might be identi�ed using domain modeling techniques. In Predator, component interfaces

actually were deliberately designed to ensure that they would be suitable for building complex

data structures. Good component designs result from interfaces that possess the following three

properties [5, 6]:

1. High-level abstractions. It is well-known that using high-level abstractions makes pro-

grams easier to write and debug. It is essential for component interfaces to hide the complex

details of their encapsulated data structures; not doing so would make components di�cult

to use and virtually impossible to combine.

2. Standardized interfaces. A key feature of software component/software generator tech-

nologies is the ability to interchange di�erent data structure implementations to address ap-

plication performance requirements. Note that plug-compatible interfaces are already present

to some extent in existing component libraries (such as Booch Components and libg++). In

fact, all basic data structures (lists, trees, arrays, etc.) could even be viewed as di�erent

implementations of the same container abstraction (that is, all of these data structures serve

as containers for collections of objects).

3. Layered designs. Experience has shown that many software systems have hierarchical

designs. The layering of abstractions (and their implementations) provides a powerful way

to design, build, and understand complex software. Layering is an important technique for

managing complexity. By partitioning a system into layers, system design can be greatly

simpli�ed.

High-level abstractions, standardized interfaces, and layered designs characterize our implemen-

tation of Predator. Each data structure feature is encapsulated in a separate component. This

collection of components|which is inherently open-ended|de�nes the Predator library. Target

data structures|those that would be requested by Predator users|are speci�ed as hierarchical

compositions of library components.

Predator provides language extensions to support the speci�cation and composition of primitive

components, and compilers to convert them into e�cient executable code. The Predator compil-

ers use advanced optimizations such as inlining and partial evaluation. Currently, there are two

compilers (P1 [7] and P2 [8]), both providing language extensions to ANSI C.

1

P1 demonstrated that our approach was promising. It was used to generate the data structures

for the OPS5/LEAPS system, a compiler for OPS5 rules [10]. OPS5/LEAPS was chosen because

1

We are also developing a third Predator compiler (P++ [9]) that will provide domain-independent language

extensions to C++. We envision that P++ will be the ultimate platform on which to base future Predator research.

Thomas- 3

Unordered Unordered Sorted Binary

Component library linked list array array tree

Booch Components 2.0-beta 320 360 398 481

libg++ 2.4 336 386 474 336

P1 281 281 287 285

P2 308 310 316 310

Figure 1: Code size (in words) of dictionary benchmark programs.

Unordered Unordered Sorted Binary

Component library linked list array array tree

Booch Components 2.0-beta 70.9 54.6 11.1 15.4

libg++ 2.4 41.9 34.3 5.4 4.1

P1 40.2 33.3 6.3 3.0

P2 39.9 33.1 5.9 2.9

Figure 2: Execution time (in seconds) of dictionary benchmark programs.

it demands high-performance and complex data structures. Preliminary experiments have shown

that using P1 to generate OPS5/LEAPS code results in improved programmer productivity and

executable code performance relative to hand written code. In the largest example attempted so

far, P1 generated almost 7000 lines of C code whose performance was 20-30% better than that of

OPS5/LEAPS. Reports on these experiments are forthcoming.

P2 is a follow-on project to P1. It supports domain-speci�c extensions to ANSI C and provides a

more modular and maintainable architecture than P1. P2 is a system that we plan to distribute.

In order to further verify the productivity and executable code performance advantages of our

approach, we used a simple benchmark

2

to test programs using the Booch Components and libg++

container classes against P1 and P2 generated container code.

Three observations regarding productivity were immediately apparent:

� The size of the P1 and P2 programs were the same or smaller than corresponding implemen-

tations for the Booch C++ Components and libg++ (see Figure 1). The reason is that both

P1 and P2 o�er high-level container abstractions that make programs compact and quicker

to write.

� It was trivial to alter container implementations in P1 and P2 programs. In general, only a

2

Since we know of no commonly-used benchmark suites that can evaluate container libraries in terms of program-

mer productivity and performance, we we devised our own benchmark. Our benchmark spell-checks a document

(the 1600 word Declaration of Independence) against a dictionary of 25,000 words. The main activities involved

are inserting randomly ordered words of the dictionary into one container, inserting words of the target document

into another container while eliminating duplicates, and printing those words of the document container that do not

appear in the dictionary container.

We used the Booch Components, libg++, P1, and P2 to implement this benchmark using four di�erent container

implementations: unordered linked lists, unordered arrays, sorted arrays, and binary trees. The benchmarks were

executed on a SPARCstation 1+ with 24 MB of memory, running SunOS 4.1.2. The Booch Components code was

compiled with Sun C++ 3.0.1 -O4, libg++ with G++ 2.4.5 -O2, and P1 and P2 with GCC 2.4.5 -O2.

Thomas- 4

few lines of declarations needed to be changed; no executable lines were modi�ed.

� Programs that used the Booch C++ Component and libg++ libraries required more extensive

modi�cations when container implementations were altered. Di�erent data structures had

either di�erent interfaces or di�erent names for semantically equivalent functions.

Also observe that the performance of P1 and P2 code is comparable to the performance of the

other programs (see Figure 2).

3 Conclusion

Software libraries have been a successful means of achieving component reuse. The paradigm

of populating a library with components, however, is potentially very brittle. When libraries

contain components that each encapsulate several features, this is a symptom of a library that is

unscalable|the number of combinations of features (and hence components) is exponential. This

is the case for libraries of data structures.

We believe a practical alternative to unscalable libraries is to rebuild these libraries to contain

components that encapsulate individual features. The library should be accompanied by a generator

(or compiler) that will take a simple user-written speci�cation of the features of the target software,

and will assemble that software automatically. We are showing that performance and productivity

need not be sacri�ced by taking a generative approach. We believe software generators will be

important tools in the advancement of software reuse.

References

[1] D. Lea, \libg++, the GNU C++ library," in Proceedings of the USENIX C++ Conference,

1988.

[2] G. Booch, Software Components with Ada. Benjamin/Cummings, 1987.

[3] M. McIlroy, \Mass produced software components," in Proceedings of NATO Conference on

Software Engineering, pp. 88{98, 1969.

[4] C. W. Krueger, \Software reuse," ACM Computing Surveys, June 1992.

[5] D. Batory, V. Singhal, and M. Sirkin, \Implementing a domain model for data structures,"

International Journal of Software Engineering and Knowledge Engineering, vol. 2, pp. 375{402,

September 1992.

[6] D. Batory and S. O'Malley, \The design and implementation of hierarchical software system

with reusable components," ACM Transactions on Software Engineering and Methodology,

October 1992.

[7] M. Sirkin, D. Batory, and V. Singhal, \Software components in a data structure precompiler,"

in Proceedings of the 15th International Conference on Software Engineering, May 1993.

[8] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, \Scalable software libraries," in Proceedings

of the ACM SIGSOFT '93: Symposium on the Foundations of Software Engineering, (Los

Angeles, California), December 7-10 1993.

Thomas- 5

[9] V. Singhal and D. Batory, \P++: a language for software system generators," Tech. Rep.

TR-93-16, Department of Computer Sciences, The University of Texas at Austin, 1993.

[10] D. A. Brant and D. P. Miranker, \Index support for rule activation," in Proceedings of 1993

ACM SIGMOD, May 1993.

4 Biography

Je� Thomas is a graduate student in the Department of Computer Sciences at the University

of Texas, Austin. He received his B.S. and M.Eng. from Cornell University in 1989 and 1992

respectively. His research interests include software engineering, databases, operating systems, and

arti�cial intelligence.

Don Batory is an Associate Professor in the Department of Computer Sciences at The University

of Texas, Austin. He received his Ph.D. from the University of Toronto in 1980, he was Associate

Editor of the IEEE Database Engineering Newsletter from 1981-84 and was Associate Editor of

ACM Transactions on Database Systems from 1986-1991. He is currently a member of the ACM

Software Systems Award Committee, and his research interests are in extensible and object-oriented

database management systems and large scale reuse.

Vivek Singhal is a doctoral candidate in the Department of Computer Sciences at the Univer-

sity of Texas, Austin. He received his S.B. from the Massachusetts Institute of Technology in

1990. His research interests include reuse systems, domain modeling, and object-oriented database

management systems.

Marty Sirkin is a sta� programmer at IBM Austin and a doctoral candidate at the University of

Washington. He received his M.S. from the University of Washington in 1988, and his B.S. from the

California Institute of Technology in 1984. His research interests include reuse systems, distributed

database management algorithms, and ease-of-use issues in user interface design.

Thomas- 6

