
Experiences in Introducing and Measuring Software Reuse

at IBM Endicott Programming Laboratory

Patricia Stump

IBM Endicott Programming Laboratory

Dept. G95/16-4D10

17C & Glendale Drive

Endicott, NY 13760

Tel: (607) 752-6237

Email: stump@gdlvm7.vnet.ibm.com

Jim Gesacion

IBM Endicott Programming Laboratory

Dept. G85/17-3R16

17C & Glendale Drive

Endicott, NY 13760

Tel: (607) 752-6254

Abstract

This position paper describes approaches to introducing software reuse as an ingrained part

of software development for the Virtual Machine / Enterprise Systems Architecture (VM/ESA)

operating system and related products at the Endicott Programming Laboratory (EPL). We

discuss the major inhibitors and how to overcome them. Our approach is to motivate software

developers to participate without making large investments in time and e�ort, and to measure

reuse in a simple, useful, and comprehensive way.

Keywords: Reuse experiences, reuse program introduction, reuse measurements

Workshop Goals: Learn and exchange information on reuse methods and experiences.

Working Groups: Reuse process models, Reuse and OO methods, Reuse and formal methods,

Useful and collectible metrics, Reusable component certi�cation

Stump- 1



1 Background

The authors have been active in the Endicott Programming Laboratory's Reuse Advisory Board

formed in 1990. Patty Stump has been the IBM Endicott site Reuse Champion since 1991, leading

the Reuse Board in several approaches to introduce Software Reuse. She's been involved in reuse

education, tool evaluation and selection, measurements, local success stories, combining reuse im-

provement with quality improvement goals and measurements, and exchanging experiences with

other IBM Reuse site Champions. Jim Gesacion has been involved as a Reuse Board manage-

ment representative since 1992 and has lead work groups to de�ne criteria for reusable component

candidates, to upgrade the EPL's Reuse Incentives Program, and Reuse advertising, as well as

advocating software reuse among the EPL management team.

2 Position

Getting a new tool or process, such as software reuse, successfully introduced, supported, and in-

grained in an existing team of technical people and its processes is di�cult[1]. Since new software is

where reuse investments are usually justi�ed, an environment of legacy code development presents

an even greater challenge for the introduction of software reuse[2]. The bulk of the EPL's VM/ESA

product consists of very procedure-oriented, tightly-coupled subsystems and modules of low cohe-

sion (EVB87), often written in Assembler programming language. When new function is created

for the VM/ESA product, it must blend with old product technology, making the exploitation of

new development technologies very limited. At the same time, to remain competitive, the EPL

must invest in new technologies that promise productivity and quality improvements. The EPL has

learned that it can demonstrate signi�cant quality improvement by removing errors from a product

in the �eld. However, in order to deliver new function to that product and maintain equivalent

low error rates, new development technologies must be employed. Software reuse is a technology

which allows the creation of more and more new function with less and less error introduction. The

EPL combines scavenging of existing product code with the examination of new product function

to identify all reuse opportunities.

2.1 What Seems to be Working; Identifying Informal Reuse

Spending time and e�ort to closely analyze the full collection of existing reusable code in the legacy

operating system, for example macros, module entry points and subroutines in any language, and to

then document and measure them provides many bene�ts. It addresses the common problem of not

having a robust repository of reusable parts for developers to use, as software reuse is introduced.

If many parts are not available, willing participants in the introduction of software reuse have only

one choice, to create new reusable parts. This often implies an investment larger than just writing

new code[3, 4], an investment which is very di�cult to justify. This "seeding" of existing parts

creates a library of parts of unknown certi�cation level [5], i.e. the desired or required level of

documentation, quality, testing, legal information required of reusable parts by the local Reuse

Board may or may not be met. These parts may be narrow in scope, and may not justify claims

in productivity improvements, since reusers may know and use them anyway. But with respect

to quality, existing parts have real customer-world history and data that can be used to identify

and record known quality information of parts for reusers of those parts. This level of quality is

di�cult to achieve through extensive internal testing and quality veri�cation of new code. What

Stump- 2



this repository of existing parts also provides to software developers is access to the new tools and

new processes of software reuse, through the familiarity of software parts they have worked with

for years. By making change as e�ortless as possible, people can adopt new habits of software

reuse, i.e. looking for parts to use on a new project, "owning" a reusable part, and understanding

documentation, quality, and test requirements of a reusable part. These habits will be required

and will reap larger bene�ts as more formal and broader domain reuse is employed. As people

understand through personal experience, the value, the tools, the requirements of good reusability,

they will more naturally be lead to create software that is more reusable and less domain-speci�c

when possible.

Scavenging of reusable components from existing software can be accomplished in many ways[6, 7],

and is likely more cost-e�ective than building new ones in an environment where the amount of ex-

isting legacy code that is maintained and enhanced far outweighs the amount of new code produced

for the same software product. The EPL uses a set of reuse characteristics when manually scanning

through existing code and when working with developers to identify reusable parts. This initial

repository is further re�ned by examining encapsulation, domain breadth, frequency of current

reuse, and known quality. Though only a subset of parts may be selected to make improvements

based on these criteria and resource availability factors, all items remain on the list to be searched

for by reusers. Once the repository of existing reusable parts is created, it becomes a repository

of opportunity for quality improvement, reusability improvement, and certi�cation of the reusable

part. Domain experts and reuse experts can decide which parts need which work. For example,

some parts may easily meet certi�cation criteria once the quality history is checked. In other cases

the documentation may need to be improved, and often, testing information needs to be found

and recorded. With a tool to track which criteria are met and which aren't, it becomes easier to

share the "costs" of certi�cation, both among people and over time. A module owner, or one of

the reusers, or a Reuse Board representative, or anyone could help with what they can a�ord to do

in meeting certi�cation criteria for a reusable part. Instead of requiring an author to do all these

"extras" for some new reusable component and requiring them to �t it in with their development

schedule now, it can be added to the repository, and mature to certi�cation as it gets reused, or as

time permits. We see this approach as an evolution of parts to the certi�ed level, and an evolution

of the organization to the broad employment of software reuse technology.

2.2 What we Measure

Measurements are most e�ective when they measure the behavior that is being encouraged. The

behavior the EPL Reuse Board wishes to encourage is the practice of reuse to attain quality and

productivity improvements. Therefore, many types of reusable parts are measured, from as-is

parts, to thoroughly proven "certi�ed" parts. The simplest measurement is the number of parts in

the repository, and how many certi�cation criteria need to be met by the uncerti�ed parts. This

measurement is presented to teams, organizations of teams, and management.

The EPL measures quality in our process and products quite extensively. Reuse measurements need

to re
ect reuse's contribution to a product's quality improvement. The EPL uses IBM corporate

reuse measurements[8]. The Reused Source Instructions (RSI) measurement and its derivatives, the

Reuse Percentage, Reuse Cost Avoidance, and Reuse Value Added are oriented toward measuring

the combined value of quality and productivity improvements. Productivity gains cannot be claimed

for all uses of a high-quality reusable part because people will naturally use it over and over and

teams will naturally share it. However, each instance of a certi�ed reusable part in the product,

from a quality-only perspective, represents a unique contribution to the quality of the product. If a

Stump- 3



developer chooses to use a "certi�ed" routine over an as-is routine, there is a di�erent quality result

in the product. There are potential services costs avoided each and every time the certi�ed part is

used. The "used instructions" (UI) (PH93) is used with an RSI which is based on total number of

instances. This reuse measurement complements the existing collection of defect-oriented product

quality measurements used in the EPL by showing the total amount of certi�ed product code at

its lower error rate, and its e�ect on the product's overall error rates and quality. These RSI-based

measurements are presented to product owners, project leaders, and management on a quarterly

basis, or when product development cycles produce new results.

To encourage teams to create certi�ed reusable parts when possible, s and to improve the quality

of as-is reusable parts, the Reuse Percentage measurement is used to set and track team goals.

To be able to explain reuse in terms familiar to product developers, additonal categories of reuse

are measured, including code ported from one platform to another and code imported from external

sources. So that everyone understands the "best" kind of reuse they can do, these reuse categories

are further re�ned into the least desirable and most desirable based on two criteria, productiv-

ity improvement and quality improvement. This matrix helps encourage reusers to focus on the

underlying requirements of "better" categories of reuse. "Best", in this case, would be a reuser

modifying the reusable part as little as possible (ideally none), a reuser relying on the original

owner to maintain a single copy of the reusable part, and the reuser knowing and being able to

prove the quality of the reusable part. This "best" reuse, when practiced, will result in the highest

quality improvement and simultaneously the highest productivity improvement.

2.3 Comparison

There are many reports on reuse experiences available. Most describe experiences in an environment

of application development or systems programmed with languages that better lend themselves to

reuse, such as Ada, C, and C++. We've found none that describe a reuse program that is introduced

for low-cost and that continues to evolve to more mature forms of reuse.

Although our measurement methods are based on existing measurement methods, ours have been

re�ned to focus on quality improvement, and have been expanded upon in an e�ort to focus on

the education, and on the progress of getting reuse momentum going in a development team at the

same time that the measurements are used to explain the �nancial costs and bene�ts.

2.4 References

References

[1] B. Bouldin, Agents of Change: Managing the Introduction of Automated Tools. Yourdon Press,

1991.

[2] J. Doll and P. Stump, \VM Quality Improvement Through Software Reuse at the Endicott

Programming Lab," Tech. Rep. TR 01.C173, International Business Machines, November 1991.

[3] B. Barnes, T. Durek, G. Ga�ney, and A. Pyster, \Cost Models for Software Reuse," in Pro-

ceedings of the Tenth Minnowbrook Workshop, July 1987.

[4] T. Bollinger and S. P
eeger, \The Economics of Reuse: Issues and Alternatives," in Proceedings

of the Eighth Annual National Conference on Ada Technology, March 1990.

Stump- 4



[5] R. T. S. Center, \IBM Reuse Methodology: Quali�cation Standards," Tech. Rep. Z325-0683,

International Business Machines, 1992.

[6] G. Caldiera and V. Basili, \Identifying and Qualifying Reusable Software Components," IEEE

Computer, February 1991.

[7] G. Mayobre, \Using Code Reusability Analysis to Identify Reusable Components from the

Software Related to an Application Domain," in Proceedings of the Fourth Annual Workshop

on Software Reuse, November 1991.

[8] J. Poulin and W. Hayes, \IBM Reuse Methodology: Measurement Standards," tech. rep., In-

ternational Business Machines, 1992, July.

3 Biography

Patty Stump is a sta� programmer at IBM's Endicott Programming Laboratory, Endicott, New

York. After numerous software development projects as a developer, her current primary respon-

sibility is to coordinate the Endicott Reuse Advisory Board's e�orts to introduce formal software

reuse into the software product development process for EPL-produced products. Her interests

include software development process models, quality improvement, and systems science. She is a

member of the IBM Corporate Reuse Council, the 100X Quality Improvement team in Endicott,

and IEEE Computer Society. She received her Bachelor's degree from East Stroudsburg University,

Pennsylvania, and her Master's degree from State University of New York and Binghamton, New

York.

James Gesacion is a �rst line development manager at IBM's Endicott Programming Laboratory,

Endicott, New York. He is currently responsible for development of Client/Server products. His

software reuse responsibilities include serving on the Endicott Reuse Advisory Board, and providing

management support and focus. His interests include achieving Six Sigma Quality in products and

processes. He received his Bachelor's Degree from Youngstown State University, Ohio.

Stump- 5


