
Reuse and Formal Methods for Ada

Maureen Stillman

Odyssey Research Associates

Ithaca, NY 14850

Tel: (607) 277-2020

Email: maureen@oracorp.com

Abstract

We support the application of formalmethods to the process of developing software. Reuse is

an important piece of this software development process. Our aim is to give software engineers

access to reusable designs, components and systems developed using formal methods. This

paper describes a variety of formal methods tools and techniques, requiring di�erent levels of

training and sophistication from their users. The result of applying these tools and techniques

will be high assurance, high quality systems composed of reusable building blocks.

Keywords: Reuse, Formal methods, Ada, Reuse libraries

Workshop Goals: To advance the state of the theory and practice combining formal methods

and reuse.

Working Groups: reuse and formal methods, reuse process models, reuse education.

Stillman- 1



1 Background

We believe that trust and reliability are the central issues in reuse. When a software engineer

contemplates reuse of even the smallest fragment of code he will begin the process with uneasy and

suspicious feelings. Unanswered questions will haunt him such as:

� What is this software?

� Who wrote this software?

� Will I be sued for using this software?

� Will this software work the way I need it to work?

� Will this software work at all?

� How buggy will this software be?

� Does this software contain viruses?

� How hard will I have to work to modify this software to do what I want it to do?

� Can I really trust one or more software engineers who I don't know to write more reliable

software than I can write myself?

In many cases, these nagging questions lead the software engineer to conclude, \I just better do it

myself. It's safer. It will also be a lot less work and aggravation to debug my own code than to

understand and �x someone else's code."

We believe that the use of formal methods will help mitigate some of these fears and encourage

more software engineers to attempt reuse. Software should be labeled in some way with the degree

of reliability of the code. One possibility is that the method by which the software was developed

could be described and the formal approach used (if any) would be identi�ed.

2 Experience in Reuse

ORA is a member of the Paramax STARS/ARPA team. Paramax has produced a Conceptual

Framework for Reuse Processes (CFRP) [1, 2]. ORA is also a DSSA contractor and works in the

domain of intelligent control systems [3]. We are well known for our expertise in the area of formal

methods. Our experience in the reuse area includes the veri�cation of a number of Booch reusable

components using ORA's Penelope veri�cation system [4]. We are currently working with NASA

and Honeywell on a Boeing 777 reuse and formal methods project in avionics. ORA is writing a

formal speci�cation of the navigation control system.

3 Position

Our approach is to o�er a range of formally based tools and techniques that are designed for use by

software engineers with di�erent levels of sophistication and training. Each of these methods o�er

Stillman- 2



increasing levels of assurance but require increased user training in exchange for greater assurance.

We address the issue of reuse at each assurance level. Finally, we discuss libraries of reusable

components that have di�erent formal methods techniques and tools applied to them.

3.1 Lightweight Tools

The \lightweight" formal methods tools require little user training and no knowledge of speci�cation

languages or proof techniques. ORA has developed a set of these tools called AdaWise based on

our formal work in Ada semantics. The AdaWise tools, while easy to use, are rigorous because they

are based on existing formal methods technology developed at ORA. With these tools, we have

combined the advantages of two approaches: the precision of formal veri�cation and the automation

of compilers. Our tools provide the precision of formal veri�cation without requiring the user to

write formal speci�cations or do proofs. The tools automatically check any Ada program for the

presence of potential errors that typically are not detected at compile time by a compiler.

Currently under development is an alias checking tool, an elaboration order checking tool, an

incorrect order dependence checker, and a de�nedness checker. These AdaWise tools verify a

limited class of specialized properties for large programs. These properties include the absence

of run-time anomalies, such as accessing variables before they have been assigned a value, and

independence of a program's behavior from compiler choice by checking for erroneous executions

and incorrect order dependences. The automatic checks for these properties are conservative ,

meaning that if no warnings are issued by the tool, then the property holds, but if warnings are

issued, the property may or may not be violated. If the tool issues a warning, it also points out

a speci�c region where a possible error may be. The user then has a localized region in which to

look for a violation.

These tools can address areas where subtle bugs are introduced particularly when modifying code

(for purposes of reuse). For example, changing the properties of variables and violating implicit

assumptions can introduce unexpected bugs.

3.2 Middleweight Tools

\Middleweight" formal methods tools are speci�cation languages that allow software engineers to

state properties of their design or implementation. The language we have developed is based on

Larch and is called Larch/Ada [5]. Formal speci�cation of requirements, design or code can help

users identify what the software or system is supposed to do in rigorous terms. This will give the

software engineer a better idea of speci�cally what the software is intended to do. Thus, he can

more intelligently select components for reuse and have greater con�dence in their ability to work

correctly.

These tools require educating programmers in a speci�cation language. They would also have to

be taught how to write formal speci�cations.

3.3 Veri�cation Tools

Finally, we o�er a formal veri�cation system that requires the software engineer to write speci�ca-

tions and do proofs. This provides the highest level of assurance, but requires signi�cant training.

Stillman- 3



The user must be trained in formal speci�cations and must understand �rst order logic and be able

to guide the theorem proving system through proofs.

Our Ada veri�cation system is called Penelope [6]. Penelope is an interactive veri�cation CASE tool,

developed by ORA, that helps programmers develop programs and their correctness proofs from

mathematical speci�cations. Penelope can be used to formally verify the correctness of programs

written in a large subset of Ada.

Penelope generates a set of veri�cation conditions (VCs) from an Ada program speci�ed in Larch/Ada.

A proof of the VCs implies that the program meets its formal speci�cations.

3.4 Libraries of Components built using Formal Methods

ORA presented work on veri�cation libraries at Tri-Ada in 1991 [7]. Real world software projects

will vary in their use of formal methods and some will use none. We must generalize the idea of

veri�cation libraries to include support for software developed with di�erent degrees of assurance.

Background to Ada Libraries

One of the design goals of Ada was to maintain semantic consistency across several separately

compiled units. The Ada library was introduced to provide a repository of information about the

various units that can be accessed by the compiler. In this way a newly compiled program will be

semantically consistent with the units currently in the library.

Program units may be changed, however, and a change may invalidate the consistency of other units.

The typical mechanism used to address this problem is to mark certain units as obsolete whenever

any of their assumptions have changed. An obsolete unit has to be recompiled. Recompilation

constitutes a change, and so this process is transitive.

Changes to an Ada program library may have far-reaching e�ects, and may require signi�cant

amounts of recompilation. In the case of compilation, this is only a minor problem. In a library

where the components need to meet a high level of assurance, the traditional obsolescence mech-

anism becomes unacceptable. The fact that a modi�ed piece of software now compiles does not

mean that it meets the previous level of reliability or that it now performs the new functions we

presume it will perform.

High Assurance Libraries

Formal methods libraries must deal with reliability problems on a global level: the meeting of

previous assurance levels after the code has been modi�ed or the design has been altered.

Super�cially, the problems of a formal methods library are the same as those of a conventional

Ada library: in addition to static semantic consistency, we now need to be concerned with dynamic

semantic consistency, i.e. the correctness proofs. The details, however, are quite di�erent. In

addition to program objects, a high assurance library needs to deal with speci�cations, lemmas and

proofs. New dependencies arise between these components. Automatic mechanisms to support a

mix of reliability levels is a topic of further research.

Stillman- 4



We advocate some way of labeling library components in ordinary libraries with some measure of

their reliability and the method used to achieve this. This will help the software engineer in making

a decision concerning reuse. In formal methods libraries, with a �xed range of methods in use, we

can use the above techniques, with a certain amount of automated assistance, to re-establish the

original assurance level at a minimum cost.

4 Related work

Several researchers are working on connections between formal methods and reuse and have a

variety of approaches [8, 9, 10]. Our approach is more low level than those cited since it deals

directly with the reliability and correctness of design and code. Cheng has done work in the area

of specifying software using a hierarchical approach.

5 Conclusions

Formal methods can be applied to systems and designs to increase system reliability. A software

engineer's level of con�dence in the correctness of other systems and components will encourage

reuse. The method used to ensure the reliability of a reusable system or component should be kept

with the system. The software engineer should restore the system to its previous level of assurance

after making modi�cations for reuse.

6 Bibliography

References

[1] Software Technology for Adaptable Reliable Systems (STARS), \STARS Reuse Concepts Vol-

ume I - Conceptual Framework for Reuse Processes," Paramax STARS Technical Report

STARS-TC-04040/001/01, US Air Force Systems Command, Electronic Systems Division,

Hanscom Air Force Base, MA, September 1992.

[2] Software Technology for Adaptable Reliable Systems (STARS), \STARS Reuse Concepts

Volume II - Reuse Process Architecture," Paramax STARS Technical Report STARS-TC-

04040/002/00, US Air Force Systems Command, Electronic Systems Division, Hanscom Air

Force Base, MA, September 1992.

[3] D. J. H. Taylor and D. R. Platek, \Domain-Speci�c Software Architectures for Hybrid Con-

trol," Special Report CMU/SEI-92-SR-9, Carnegie-Mellon University Software Engineering

Institute, June 1992.

[4] C. T. Eichenlaub, C. D. Harper, and G. Hird, \Using Penelope to Assess the Correctness

of NASA Ada Software: A Demonstration of Formal Methods as a Couterpart to Testing,"

NASA Contract Report 4509, Odyssey Research Associates, Inc., Ithaca, NY, May 1993.

[5] O. R. Associates., Larch/Ada Reference Manual. Ithaca, NY, September 1989.

Stillman- 5



[6] D. Guaspari, C. Marceau, and W. Polak, \Formal veri�cation of Ada programs," IEEE Soft-

ware Engineering, vol. 16, pp. 1058{1075, Sept 1990.

[7] G. R. Hird, \Towards Reuse of Veri�ed Ada Software," in Proceedings of Tri-Ada '90, (Ithaca,

NY), pp. 14{21, December 1990.

[8] M. Simos, \Towards an industry-wide consensus reuse process model," in Proceedings of the

Fifth Annual Workshop on Software Reuse, IEEE Computer Society and University of Maine,

1992.

[9] J. Knight and D. M. Kienzle, \Reuse of speci�cations," in Proceedings of the Fifth Annual

Workshop on Software Reuse, IEEE Computer Society and University of Maine, 1992.

[10] B. Cheng and J. jang Jeng, \Formal methods applied to reuse," in Proceedings of the Fifth

Annual Workshop on Software Reuse, IEEE Computer Society and University of Maine, 1992.

7 Biography

Maureen J. Stillman is VP of Engineering at ORA Corporation. Ms. Stillman has been manager

of the Penelope formal methods project for six years. At ORA, she has managed a number of

projects in formal methods, security, and network management. From 1985-1987 she worked for

Bolt, Beranek and Newman as manager of a network management project. From 1978-1983 she

worked for MIT Lincoln Laboratory designing network protocols for distributed mobile packet radio

networks. She received an MS in Computer Science from Northwestern University in 1985 and a

BS in Mathematics from the University of Illinois in 1977.

Stillman- 6


