
A Method for Assessing Cross-Lifecycle Reuse

Je�rey S. Poulin

IBM Federal Systems Company

MD 0220, Owego, NY 13827

Tel: (607) 751-6899

Email: poulinj@vnet.ibm.com

Fax: (607) 751-2800

Abstract

Most current reuse measurement models focus on quantifying the level of software, e.g., code,

reused on a given project [1], [2], [3]. One reason for the focus on code reuse metrics lies in the

relative ease of quantifying the amount of code in a given product. A second, perhaps more

critical, reason lies in the di�culty of completely understanding the issues behind reuse in other

phases of the lifecycle, such as design [4], information [5], and test cases. This position paper

describes a method to quantify the total amount of cross-lifecycle reuse on a project. However,

until we have practical and reliable methods of understanding and quantifying the issues in each

phase of software development, we will depend on our current code reuse models to reect the

overall level of reuse in our systems.

Keywords: Reuse Metrics, Measuring Reuse, Cross-lifecycle metrics.

Workshop Goals: Learn and exchange information on current reuse issues, methods, and

metrics.

Working Groups: Design guidelines for reuse, Useful and collectible metrics, Reuse and formal

methods.

Poulin- 1



1 Background

As a member of IBM's Reuse Technology Support Center, the author helped lead the development

and acceptance of the IBM software reuse metrics. He has conducted research into software mea-

surement techniques and implemented a program measurement tool for the workstation platform.

A common aspect of this measurement work has remained the need to implement metrics that the

software development manager can easily acquire, understand, and use with the con�dence that

the values upon which he makes his business decisions accurately reect the state of his product.

2 Position

To fully determine the complete value of reuse, we must develop a method of measuring reuse in the

total software development lifecycle. (The emphasis on development means to exclude maintenance

activities.) The other phases of the lifecycle may include the reuse of requirements speci�cations,

designs, user documentation, and other products related to the project. Since code really only

contributes about 20 percent of the e�ort to software development [6], it seems misleading to claim

a total level of reuse on a product based solely on the amount of reused source instructions.

However, we do not currently have a means to determine the total reuse on a product based on

reuse in each of the lifecycle stages. We know that where code reuse takes place, reuse of designs,

test cases, and documentation has probably also taken place. This \inclusion e�ect" [7] of reusing

subsequent lifecycle products motivates us to reuse early in the lifecycle so as to generate the most

value out of our reused parts. Because of this e�ect, I take the position (in the form of a hypothesis)

that until we develop a comprehensive system of measuring and combining reuse in each phase of

the software development lifecycle:

HO: total cross-lifecycle reuse � level of code reuse

Observations show Reuse Percent (Reuse%) [8] as the most widely used and reported reuse metric.

Reuse% has an advantage in that managers can easily gather data for, calculate, and understand

the metric. This position paper assumes a systematic method of determining what to count (a

reuse de�nition) [9] and does not attempt to address the �nancial aspects of cross-lifecycle reuse.

Instead, it proposes to use (code) Reuse% as an overall indicator of the level of reuse on a product.

The premise of this position extends the observation in [10] that despite their shortcomings, LOC

not only serve as a good indicator of overall productivity in code but also provide a good secondary

indicator of work done in other phases.

2.1 Proposed method to quantify total lifecycle reuse

While we use the code Reuse% as an overall product indicator, we can work towards realizing the

following model of Product Reuse%. First , we require a means to measure reuse in each individual

stage of the lifecycle. A straightforward approach to measure reuse in each phase would extend

the approach currently used to measure reuse of code. First, determine the unit of granularity or

workproduct unit of interest at each stage. Second, base the Reuse% for each stage on the portion

of units reused in that stage. We might use the following units for each stage:

Poulin- 2



� Code{ Lines of code, Function Points

� Design{ Module design sheet, Component speci�cation

� Test{ Test cases, test scripts

� Information Development{ Words, tokens, paragraphs

Observe that once we de�ne the units to use at each phase and we put a process (and required tools)

in place to track these units, we can determine the reuse percent for each phase. This may prove

useful as an in-process measurement to indicate how well a product tracks towards a reuse target

or goal. Also observe that this approach assumes each lifecycle phase has well-de�ned boundaries

(e.g., we can calculate a Reuse% for each phase) and that the software development process remains

relatively stable (e.g., that we can model the total lifecycle as the sum of the activity in each of the

individual phases). Although these assumptions may not hold for any given project, they allow us

to develop a general equation for Product Reuse%.

To achieve an overall Product Reuse%, we determine the portion of total product e�ort expended

in each phase of the lifecycle. For post-mortem statistics, actual values will yield the best results,

but for a general model we can use historical averages obtained from the organization product

development o�ce. For example, we might use the following lifecycle e�ort pro�le in our general

model [6]:

� Requirements De�nition{ takes 15 percent of the lifecycle

� Design{ takes 15 percent of the lifecycle

� Code{ takes 20 percent of the lifecycle

� Test{ takes 30 percent of the lifecycle

� Information Development/admin{ takes 20 percent of the lifecyle

Knowing the Reuse% in each phase and the relative e�ort expended in each phase, we can calculate

the overall Product Reuse% as follows:

Product Reuse% =

n

X

i=1

(Relative lifecycle e�ort in Phase

i

) � (Reuse% in Phase

i

)

where n=number of phases in lifecycle.

2.2 Example total lifecycle reuse calculation

Let the entire software development cycle for an organization consist of the �ve phases above, in

the proportions given. Let the following situations determine the amount reuse in each phase:

� Requirements De�nition{ 25 percent of requirements for the current system came from a

similar system done last year for another customer

Poulin- 3



� Design{ 55 percent of the designs, mostly coming from the requirements reused in the pre-

vious phase, came straight out of the graphical CASE tool library used by the design depart-

ment,

� Code{ 35 percent of the code came unmodi�ed from the organization's reuse subdirectory

on AFS,

� Test{ 25 percent of the test cases and drivers from other projects worked just �ne without

change, and,

� Information Development/admin{ 65 percent of the documentation, mostly from hyper-

text links to help �les and user instructions, came from the Information Development (ID)

database.

The Product Reuse% would equal:

� Reuse%: Requirements De�nition{ :15� :25 = :038

� Reuse%: Design{ :15� :55 = :083

� Reuse%: Code{ :20� :35 = :07

� Reuse%: Test{ :30� :25 = :075

� Reuse%: Information Development/admin{ :20� :65 = :13

For a total Product Reuse% of 39.6 percent.

3 Comparison

The detailed version of the COnstructive COst Model (COCOMO) software cost-estimation model

uses phase-dependent E�ort Multipliers to reect the e�ect of the cost drivers on the phase dis-

tribution of e�ort [11]. The COCOMO model premises all calculations on cost drivers and E�ort

Multipliers that reect the relative di�culty or complexity at each lifecycle phase. COCOMO de-

�nes the following six lifecycle phases: Requirements, Product Design, Detailed Design, Code and

Unit Test, Integrate and Test, and Maintenance.

The model proposed by Ga�ney and Durek [1] also addresses reuse at each lifecycle stage and

uses e�ort multipliers similar to COCOMO. These models contrast with the model presented here,

which does not consider the value or complexity of each task because this model does not seek to

estimate costs or ROI. Were the model to address total lifecycle costs or costs avoided, it would

extend the model presented in [2] by including a cost factor related to the value of the units we

choose to measure at each phase.

References

[1] J. G. Jr. and T. Durek, \Software Reuse- Key to Enhanced Productivity: Some Quantitative

Models," Information and Software Technology, vol. 31, no. 5, June 1989.

Poulin- 4



[2] J. Poulin and J. Caruso, \A Reuse Measurement and Return on Investment Model," in Pro-

ceedings of the Second International Workshop on Software Reusability, (Lucca, Italy), 24-26

March 1993.

[3] B. Barnes and T. Bollinger, \Making Reuse Cost E�ective," IEEE Software, vol. 8, no. 1,

pp. 13{24, January 1991.

[4] G. Boetticher, K. Srinivas, and D. Eichmann, \A Neural Net-based Approach to Software

Metrics," in Proceedings of the 5th International Conference on Software Engineering and

Knowledge Engineering, (San Francisco, CA), pp. 271{4, 14-18 June 1993.

[5] K. Yglesias, \Limitations of Certi�cation Standards in Achieving Successful Parts Retrieval,"

in Proceedings of the 5th International Workshop on Software Reuse, (Palo Alto, California),

26-29 October 1992.

[6] G. G. Inc., \Software Engineering Strategies Strategic Analysis Report," tech. rep., April 30,

1991.

[7] T. Bollinger and S. Peeger, \Economics of reuse: issues and alternatives," Information and

Software Technology, vol. 32, no. 10, pp. 643{52, December 1990.

[8] J. Poulin and J. Caruso, \Determining the Value of a Corporate Reuse Program," in Proceed-

ings of the IEEE Computer Society International Software Metrics Symposium, (Baltimore,

MD, 21-22 May 1993), pp. 16{27, 21-22 May 1993.

[9] J. Poulin, \Issues in the Development and Application of Reuse Metrics in a Corporate En-

vironment," in Fifth International Conference on Software Engineering and Knowledge Engi-

neering, (San Francisco, CA), pp. 258{262, 16-18 June 1993.

[10] R. Tausworthe, \Information models of software productivity: limits on productivity growth,"

Journal of System Software, vol. 19, no. 2, pp. 185{201, October 1992.

[11] B. Boehm, Software Engineering Economics. Englewood Cli�s, NJ: Prentice-Hall, 1981.

4 Biography

Je�rey S. Poulin, joined IBM's Reuse Technology Support Center, Poughkeepsie, New York, in

1991. His responsibilities on the RTSC included developing and applying corporate standards for

reusable component classi�cation, certi�cation, and measurements. He currently works in Open

Systems Development for IBM's Federal Systems Company and participates in the IBM Corporate

Reuse Council, the Association for Computing Machinery, and the IEEE Computer Society. A

Hertz Foundation Fellow, Dr. Poulin earned his Bachelors degree at the United States Military

Academy at West Point, New York, and his Masters and Ph.D. degrees at Rensselaer Polytechnic

Institute in Troy, New York.

Poulin- 5


