
Software Requirement Text Reuse

Sooyong Park

Center for Software Systems Engineering

George Mason University

4400 University Drive

Fairfax, VA 22030-444

Tel: (703) 993-3684

Fax: (703) 993-1521

Email: spark@mason1.gmu.edu

Abstract

Reuse is widely recognized as a solution to improving software productivity, quality and

reliability. While there has been much research on code and design reuse, there has been little

research e�ort extended in the requirement reuse. However, among the software development

phases, requirements analysis is one of the most important and least supported phase of the

software development process. The requirement reuse is proposed to increase productivity and

quality of requirement analysis phase.

We focus on requirement text reuse research since requirements are, in most case, expressed

in natural language. We use conceptual and numerical clustering techniques to build reusable

requirement components. Automatic indexing techniques are applied to classify the components.

The architecture of a requirement reuse support system and the contributions of this research

are included in the conclusion.

Keywords: Software Reuse, Requirement Reuse, Text Reuse, Requirement Engineering, Re-

quirement Clustering and Indexing

Workshop Goals: Exchanging idea of current research issues

Working Groups: Domain Analysis/engineering, Reuse and OO Method

Park- 1



1 Background

The George Mason University (GMU) Center for Software Systems Engineering (CSSE) research in

systems and software requirement engineering is directed to improve and promote the development

of requirements that re
ect the needs of the user. The framework for this research is an Advanced

Integrated Requirement Engineering System (AIRES). AIRES includes requirement assessment,

prototyping, transformation and reuse. AIRES processes the requirements as a natural language

text.

The requirement reuse project was initiated by the observation that, even though there are many

common requirements, we do not have any method to reuse. In development of complex software

system, eliciting and analyzing the system requirements has been a serious problem. In many

cases, erroneous requirements produced a wrong product[1]. One way to alleviate that problem

is to reuse requirements from an already-developed system. The reused requirement can be used

as an example so that it can be a solution of the well known problem "users often do not know

what they want". For example, in development of an Automatic Gas Station(AGS), users knew

that they needed a security system but, in many cases, they did not know what speci�c security

they wanted. If we had security requirements in an Automatic Teller Machine (ATM) system, the

security requirements of ATM system could be a good example in AGS system.

2 Approach

Since we are dealing with natural language requirement, it is very to abstract or parameterize the

natural language requirement automatically. But our purpose in requirement reuse is to provide

requirement examples. Therefore, parameterization or abstraction of natural language require-

ment are not necessary. The issue is how to cluster the requirement sentences to build reusable

requirement components. For example, a requirement about security can appear through out the

requirement document. Extraction of these requirements is a key to building reusable requirement

components.

Our approach to requirement text reuse has two phases - the requirement component extraction

phase, and the classi�cation and retrieval phase.

2.1 Requirement Reuse Process

The requirement reuse process consists of four steps. These are;

STEP 1: Text Analysis

STEP 2: Component Extraction

STEP 3: Component Classi�cation

STEP 4: Retrieval

The step 1 is to identify requirement concepts. We use requirement concepts for objects, functions,

and quality goals of the system requirements. Based on the requirement concepts, clustering is

Park- 2



performed to create reusable components. The reusable components are indexed by automatic

indexing techniques. Following subsections discuss each processing step in detail.

2.2 Text Analysis

The purpose of this process is to develop the rules and algorithms to identify the requirement

concepts automatically. In the identi�cation of requirement concepts, there are two approaches;

1. Using extensive domain knowledge and reasoning process. { This is an AI approach.

2. Using lexical analysis and syntactic pattern analysis.

We adopted the second approach since it is typically more practical and also domain independent.

The object and function concepts can be identi�ed by syntactic pattern analysis and noun and verb

classi�cation. The identi�cation of quality goals use of a quality goal table, thesaurus analysis, and

syntactic pattern analysis.

2.3 Reusable Component Extraction

Reusable component extraction is performed by clustering requirement with respect to identi�ed

requirement concepts. We use both numerical clustering and conceptual clustering. >From these

two clustering techniques, we can extract requirements that relate to each identi�ed requirement

concept. The extracted requirements are body of reusable requirement component with respect to

the requirement concept.

2.4 Component Classi�cation and Retrieval

This process is based on automatic text indexing techniques which have been established in informa-

tion retrieval area[2, 3, 4]. The main technique is extracting lexical a�nities from the requirement

component. The observation of lexical a�nities in large textual document has been shown to convey

information on both syntactic and semantic levels and provides us with a powerful way of taking

context into account[5]. Lexical a�nities will serve as indices of the component.

3 Related Work

There is no known directly related work, but the research is related to two other areas of research;

� Informal requirement speci�cation process by linguistic analysis[6, 7, 8].

� Speci�cation reuse by analogy[9, 10]

Since we are focusing on reuse in this paper, we will discuss the second item.

Maiden and Sutcli�e[9] proposed to reuse domain abstractions by analogy analysis. From the

description of the system, they try to �nd the similarities among the already prepared domain

Park- 3



abstractions. The system shows the domain abstractions with analogical mapping between the

retrieved domain abstract and the target system domain. They reported that it was useful for

novice software engineers in analyzing the problem domain since domain abstractions can be a

good example.

The problem is that preparation and representation of domain abstractions is a non-trivial task.

Also, there is no guidelines for domain abstraction. To �nd an analogy, the system need to be spec-

i�ed or understanding of the abstract requirements is need. This means the software engineer need

to understand the abstract requirement to reuse abstract requirement which can be contradiction.

Miriyala and Harandi[10] proposed speci�cation derivation from the existing speci�cation by anal-

ogy. The general concept is similar to that of Maiden and Sutcli�e but they found the similarity

in the speci�cation structure instead of in the domain abstraction. They view the system as a tree

structure. By the similarities in edges and nodes, they retrieve the speci�cations. To be processed

by analogy reasoning, all the system speci�cation need to be represented as structured diagram like

tree structure. The target system needs to be represented in the same way. The problem is that

there is no unique system structure for a problem domain. In other words, the system structure

can be represented in di�erent tree structures depending on the perspective.

In general, the analogy approach in speci�cation sounds reasonable since we can only reuse when

there are similarities. However, these approaches need a lot of domain knowledge. Preparation of

that domain knowledge can be as di�cult as requirement analysis.

4 Conclusion

Based on discussed requirement reuse process, we are developing a supporting tool called the

Requirement Reuse System (Re

2

S). The general architecture of Re

2

S is shown in �gure 1.

?

-

6

?

� -

Text Analyzer

Clusterer

Index

Builder

Component

Base

Retrie-

val

Proces-

sor

Figure 1 General Architecture of Requirement Reuse System

Component Extractor Repository Component Finder

The contribution of this research includes

1. Increased productivity by reducing the risk and e�ort needed to develop requirements.

2. Increased reuse e�ect by improved cross-referencing of requirement component to design,

code, and test segment.

Park- 4



3. Text reuse method can be applied to various software documentation reuse.

Besides implementation of Re

2

S, the future research will include an empirical study of requirement

elicitation and analysis by reuse, and study of traceability between reusable requirement and design

components.

References

[1] A. Davis, Software Requirements Analysis and Speci�cation. Englewood Cli�s, New Jersey

07632: Prentice Hall, 1990.

[2] Y. Maarek, D. Berry, and G. Kaiser, \An in formation retrieval approach for automatically

constructing software libraries," IEEE Trans. on Software Engineering, pp. 800{813, Aug 1991.

[3] M. Luhn, \The automatic creation of literature abstracts," IBM J. Res. Develop., pp. 159{165,

Apr 1958.

[4] J. Palmer and Y. Liang, \Indexing and clustering of software requirements speci�cation,"

Information and Decision Technologies, vol. 18, pp. 283{299, 1992.

[5] F. Smadja, \Lexical co-occurrence: The missing link," J. Assoc, Literary and Linguistic Com-

puting, vol. 4, no. 3, 1989.

[6] M. Saeki, H. Horai, and H. Enomoto, \Software development process from natural language

speci�cation," 11th International Conference on Software Engineering, pp. 64{73, 1989.

[7] R. Abbott, \Program design by informal english description," Communication of ACM,

pp. 882{894, November 1983.

[8] C. Rolland and C. Proix, \A natural language approach to requirement engineering," 4th

International CAiSE Conference, pp. 257{277, 1992.

[9] N. Maiden and A. Sutcli�e, \Exploitung reusable speci�cations through analogy," Communi-

cation of ACM, April 1992.

[10] K. Miriyala and M. Harandi, \The role of analogy in speci�cation," 6th Annual Knowledge-

Based Software Engineering Conference, pp. 117{126, 1991.

5 Biography

Sooyong Park is a research assistant and doctoral student in the School of Information Technology

at George Mason University. His research interests are software reuse, requirement engineering, and

Object-Oriented domain analysis in real-time system. He has been researched in software reuse area

for three years.

Sooyong received a BS in computer science from the Sogang University in Seoul Korea, an MS in

computer science from the Florida State University.

Park- 5


