
Module Interface Speci�cation and Large-Grain Software Reuse

Jim Q. Ning

100 S. Wacker Dr.

Andersen Consulting

Chicago Illinois 60606

Tel: 312-507-4987

Email: jning@andersen.com

Fax: 312-507-3526

Abstract

This abstract reports a recent research project at Andersen Consulting's Center for Strategic

Technology Research (CSTaR). A central component of this research is the design and devel-

opment of a module interface speci�cation language called SLIM (a Speci�cation Language for

Interconnecting Modules). This language can be used to specify module interface parameters as

well as pre and postconditions of module functions. The module speci�cations written in SLIM

can be used to statically analyze the \plug-compatibility" of modules. This research is a part of

a recent Andersen initiative to promote large-grain reuse and component-based software system

construction.

Keywords: large-grain component reuse, formal speci�cations, modules, megaprogramming,

MILs

Workshop Goals: to gain a deeper understanding of the state of the research and practice of

reuse in other organizations, and to get feedback from external experts on our research

Working Groups: any group that addresses the technical aspects of reuse (e.g., domain anal-

ysis, megaprogramming, reuse libraries, object-oriented methods, reusable component recovery,

etc.)

Ning- 1



1 Background

My Ph.D. research was in the area of Knowledge-Based Program Analysis. During the last �ve

years with Andesen Consulting, I mainly worked on Software Re-engineering and Reusable Com-

ponent Recovery. I and my colleagues developed two workbench environments (BAL/SRW and

COBOL/SRE) and published many journal articles and conference papers in these areas. Since

early this year, I am leading a research project in the area of Module Interface Speci�cation and

Analysis. The primary objective of this research is to study ways to make large, complex, and

possibly heterogeneous software modules more reusable.

2 Position

Andersen Consulting specializes in constructing large customer application systems for many in-

dustries such as utility, telecommunications, manufacturing, etc. In the past, these systems were

typically built by our engagement teams at the customer sites. Even for systems built within the

same industry line, software reuse happens only in a very ad hoc fashion.

In order to promote large-scale reuse, we now believe that we must change the way that our

customer applications are produced and delivered. There is a recent company-wide initiative to

promote component-based software system construction. Central to this initiative is the \software

factory" concept. We plan to build 15 to 20 advanced software development centers worldwide,

called Solution Engineering Centers (SECs). In the future, a large percentage of the customer

software development is expected to be done at these SEC sites. Our �eld teams will be mainly

responsible for requirement acquisition, testing, tailoring, and maintenance tasks. Through SECs,

our experience and software assets accumulated in the past will be greatly leveraged.

CSTaR is a research-oriented organization within Andersen Consulting. Its Software Engineering

Laboratory (SEL) is currently undertaking a research project (Module Interface Speci�cation and

Analysis) as part of the company-wide reuse initiative. We are developing a module interface

speci�cation language called SLIM. This language will be used to encapsulate large, complex, and

possibly heterogeneous software code modules to make them more reusable. We are also developing

static analysis techniques to assist module interconnection.

Many previous attempts on reuse were based on the reuse of small components such as data struc-

tures, algorithms, object classes, procedures and functions. There are many technical di�culties

associated with small-component reuse. The user can be overwhelmed by the number of small

objects in a reuse library; it is di�cult to locate desired components. Besides, a large number of

interconnections will have to be established by the user in order to compose larger objects from

smaller ones. In general, the payo� by small-scale reuse is low and there is little incentive for the

user.

Therefore, in our research, we promote large-grain component reuse. Some examples of large-

grain components are account payable/receivable subsystems, database servers, and user interface

packages. In this position paper, we call these large objects \modules". A module in this sense

possesses the following characteristics:

it is large - A module may consist of a large number of objects and span several programs and

data �les.

Ning- 2



it is structurally independent - A module should be loosely coupled with its outside world. A

totally independent module can run as a separate process and is normally called a \server".

A module that requires limited services from other modules is called a \client".

it is functionally cohesive - A module provides a set of closely-related functional services in its

application domain.

In software design, what we call modules have also been referred to as \subsystems".

Traditionally, large modules are rarely reusable because they are large and complex and therefore

hard to understand by the user. Also, they might be written in di�erent programming languages

and assume di�erent execution platforms. A speci�cation in SLIM can be seen as a \wrapper"

around a module. It hides the implementation details and explicates only the services provided

and required by the module. Using hardware analogy, we call a provided service a \server plug"

and a required service a \client plug". Using SLIM, both the syntactic requirements and semantic

behaviors of a plug can be speci�ed. The syntactic requirements are speci�ed in terms of interface

parameter types (signatures) and the semantic behaviors in terms of pre and postconditions.

The client plug (C) of a module attempts to reuse the server plug (S) of another module by

interconnecting C with S. A static analyzer will verify the \plug-compatibility" of the two plugs.

The analyzer will check the type matching between the parameter speci�cations of C and S. In

addition, it will also check whether their pre and postconditions match. More speci�cally, it will

attempt to verify that the preconditions of C implies the preconditions of S (so that S can be

invoked normally) and the postconditions of S implies the postconditions of C (so that C's service

requirements are fully met by S).

Recently, we have completed a proof-of-concept prototype that demonstrates the above ideas.

3 Comparison

The survey by Prieto-Diaz and Neighbors appeared in 1986 [1] can be recognized as a \renaissance"

work in module interconnection languages (MILs) as it sparked o� several e�orts on the subject.

Prior to this paper, module interconnection languages received little attention. Even the objectives

of these early e�orts were modest.

Module interconnection research was primarily motivated by the need for system integration and

con�guration management support in software development. This line of research helped the for-

mation of megaprogramming concept. According to Boehm and Scherlis [2], megaprogramming

refers to the practice of building and evolving computer software component by component. In

contrast to the traditional programming concepts, megaprogramming is based on the reuse of large

components or modules rather than primitive programming statements and con-structs.

In their paper on megaprogramming [3], Wiederhold et al discussed a conceptual framework for

megaprogramming. What they call megamodules are large modules each of which is possibly an

entire system by itself. They are programs that interconnect and enable communication among

sub-modules. Megaprograms are like \glue" for module composition and typically involve com-

munication over networks for distributed systems. Megaprogramming languages extend MILs by

handling information transfer between heterogeneous modules, between dynamic queries and up-

dates by users, between distributed network communication protocols, and by dynamically changing

the speci�cation of interfaces.

Ning- 3



A unique aspect of Perry's work on the Inscape project [4] is the practical use of formal speci�cations

for describing module interfaces. Shallow consistency checking mechanisms can be used to process

these speci�cations to catch certain kinds of errors. Changes to speci�cations can be automatically

trickled down to the code level. If some part of the speci�cation is not satis�ed, warnings are

signaled. The reverse direction of 
ow is also possible; changes to code can be propagated to the

speci�cation level and transmitted to related modules to determine e�ects and con
icts resulting

from the change. Perry also suggested test case generation from speci�cations and integration

testing to augment static analysis. Finally, these speci�cations can also be used for browsing and

understanding the function of the associated modules and this feature is especially of interest in

reuse library management. The extent of implementation of this work is not evident from the

literature.

Recently there has been a trend towards Object-Oriented Module Interconnection Languages

(OOMILs). A speci�cation of a module's semantics is essentially a model of the module's behavior.

Object-oriented methods can be used naturally to model the application domain and functional ser-

vices of modules. Besides, class inheritance feature assists the reuse of object-oriented speci�cations

across module speci�cations.

In Hall and Weedon's work [5], they claim that the main problem with most programming languages

is the lack of ability to describe what are needed (as client modules) although they usually have

constructs to state what are provided (as server modules). They suggest constructs for making

requires part explicit in modules. Each module speci�cation is an object. The requires and provides

interfaces are objects too. Modules have in addition to requires and provides �elds, a contains �eld

that indicates objects contained in the module.

POLYLITH [6, 7] is a system that helps programmers interconnect mixed-language software com-

ponents for execution in heterogeneous environments. POLYLITH supports large-scale reuse: a

module in it must be able to run as an independent process. An interface must be speci�ed if the

module is to be used by other modules. In addition, a module has to list all services it uses, and

indicates an implementation and optionally a target machine. An application is speci�ed in terms

of all bindings needed between di�erent modules included in the application. POLYLITH uses this

speci�cation to guide application packaging (static interfacing activities such as stub generation,

source program adaptation, compilation, and linking). A central idea is the notion of a software

toolbus, which integrates application modules and hides away heterogeneity in coding languages

and execution architectures.

According to the Object Management Group (OMG), the Common Object Request Broker Archi-

tecture (CORBA, [8]) provides the mechanisms by which objects/modules may transparently make

requests and receive responses. IDL (the Interface De�nition Language) is the language in CORBA

used to describe the interfaces that client objects call and object implementations provide.

An Object Request Broker (ORB) acts as the object communication layer. When a client object

needs a service from a server object, the request is initiated by calling stub routines that are

speci�c to the server object. Then, the ORB layer intercepts the request, locates the appropriate

implementation code, transmits parameters, and transfers control to the object implementation

through an IDL skeleton. When the request is complete, control and output values are returned to

the client through ORB layer.

PARTS (Parts Assembly and Reuse Tool Set [9]) is a component-based visual programming envi-

ronment for developing applications from a category of pre-fabricated components. It has a very

intuitive, friendly, object-oriented user interface. New applications can be quickly assembled by

Ning- 4



simply selecting existing parts from the reuse category and creating event, argument, and result

links among them using mouse clicks, context-sensitive menus, and dialog boxes. In situations when

appropriate components can always be found in the reuse category, complete new applications can

be built without traditional typing-style programming.

PARTS also supports the integration of heterogenous (multi-language, mixed-application) compo-

nents with the help of OS/2's DLL (Dynamic Link Library) and DDE (Dynamic Data Exchange)

facilities.

References

[1] R. Prieto-Diaz and J. M. Neighbors, \Module Interconnection Languages," The Journal of

Systems and Software, vol. 6, pp. 307{334, 1986.

[2] B. Boehm and B. Scherlis, \Megaprogramming," in Proceedings of the DARPA Software Tech-

nology Conference, 1992.

[3] G. Wiederhold, P. Wegner, and S. Ceri, \Toward Megaprogramming," Communications of the

ACM, vol. 35, pp. 89{99, November 1992.

[4] D. E. Perry, \The Inscape Environment," in Proceedings of the 11th International Conference

on Software Engineering, (Pittsburgh, PA), pp. 2{12, May 1989.

[5] P. Hall and R. Weedon, \Object-Oriented Module Interconnection Languages," in Proceedings

of the Second International Workshop on Software Reuse, (Lucca, Italy), March 1993.

[6] J. Purtilo, \The Polylith Software Bus," Tech. Rep. TR-2469, University of Maryland, 1991.

[7] C. Hofmeister, J. Atlee, and J. Purtilo, \Writing Distributed Programs in Polylith," Tech. Rep.

TR-2575, University of Maryland, 1991.

[8] \The Common Object Request Broker: Architecture and Speci�cation," Tech. Rep. 91.12.1,

Object Management Group, 1991.

[9] DIGITALK, PARTS Workbench User's Guide, February 1993.

4 Biography

Jim Ning's Ph.D. research was in the area of Knowledge-Based Program Analysis. During the last

�ve years with Andesen Consulting, he worked mainly on Software Re-engineering and Reusable

Component Recovery. He and his colleagues developed two workbench environments (BAL/SRW

and COBOL/SRE) and published a number of journal articles and conference papers in these areas.

He is currently leading a research project in the area of Module Interface Speci�cation and Analysis.

Ning- 5


