
Building A Repository of Software Components: A Formal

Speci�cations Approach

R.T. Mittermeir

Instit�ut f�ur Informatik

Universit�at Klagenfurt

A-9022 Klagenfurt, Austria

e-mail: roland@samos.i�.uni-klu.ac.at

R. Mili, A. Mili

University of Ottawa

Department of Computer Science

Ottawa, Ont. K1N 6N5 Canada

e-mail: frmili,amilig@csi.uottawa.ca

Abstract

In our correspondence to the �fth Workshop on Software Reuse [1], we had discussed the

design and preliminary implementation of a repository where software components can be stored

and retrieved automatically, using a formal-speci�cation approach. In this paper we report on

our progress, by describing the �rst prototypes we have for this repository, as well as preliminary

assessment of their performance.

Keywords: formal speci�cation, program correctness, program re�nement, theorem proving,

software repositories, storage and retrieval of software components.

Workshop Goals: assessing how our work �ts in the overall problem of software reuse; iden-

tifying potential partners for developing our system on a larger scale, and with sharper focus.

Working Groups: reuse and formal methods, tools and environments, reuse process models,

domain analysis and engineering, reuse handbook.

Mittermeir- 1



1 Background

The approach advocated in this paper results from the combination of two research e�orts:

� An e�ort by the �rst author to build a software archive as a strati�ed multidimensional

classi�cation structure for software components.

� An e�ort by the second and third authors to investigate various features of the speci�cation

process and the speci�cation product, as well as the construction and veri�cation of programs.

In a recent joint publication [2] the �rst and third authors make a proposal for constructing a

database of software components, based on the following premises:

� Entries of the database have the form of hspecification; programi pairs, where the program

component is correct with respect to the speci�cation component.

� The set of database entries is structured by means of the re�nement ordering between the

speci�cation components of the entries.

� The retrieve key for retrieval operations on the database take the form of a speci�cation, and

seeks to determine all the programs of the database that are correct with respect to the key,

by matching the key against the speci�cation components of database entries.

Our design rationale is that by representing database entries with arbitrarily abstract speci�cations

and by letting the match between a store key and a retrieve key be de�ned by the re�nement ordering

(rather than strict equality), we deal e�ectively with the diversity of software components and the

complexity of organizing such components in a database.

In this position paper we report on our progress in implementing this software repository, using

C under Unix, and an experimental theorem prover (Otter,
c

Argonne National Laboratory).

Among the Functions we have implemented we mention: Storage of software components; Retrieval

of software components; and Approximate Retrieval of software components, to be invoked whenever

(exact) retrieval fails to produce results.

2 Position

2.1 Statement of the Position

We submit the position that the storage and retrieval of software components in an automated

software repository is technologically possible, provided these components are described by formal

speci�cations. This means in principle that software designers can use o�-the-shelf software, in the

same manner as hardware designers make use of o�-the-shelf hardware to design hardware systems.

We qualify this position slightly, by adding that although the storage and retrieval is possible, it

is not (yet) e�cient: the theorem proving parts of our system remain something of a bottleneck

(proofs can take unreasonably long).

To place our position in context, we add two premises:

Mittermeir- 2



� First, we realize that there is a great deal more to software reuse than the mere mechanics

of storing and retrieving software components; more important than storing and retrieving

components is the ability to design components that are worthy of reuse; also more important

is the ability to de�ne design methodologies that make use of reusable components. On the

other hand, as several authors point out [3, 4, 5, 6], software reuse is as much (if not more)

a managerial and organizational challenge as it is a technological challenge.

� Second, our pattern of software reuse depends on programs being speci�ed formally. In an

organization that does not practice formal methods, it may or may not be cost e�ective to

formally specify software components for the sole purpose of integrating them in a software

repository. On the other hand, one might argue that the use of formal methods is cost-e�ective

on its own merits [7].

To motivate our position (and illustrate the extent of its validity) we give below some details about

the implementation of our system.

2.2 Substantiating the Position

In this section we give very summary details about the implementation of our system. First, we

discuss its overall architecture.

In any database system, the key to e�cient retrieval is the availability of an ordering between the

database entries. Typically, database entries are totally ordered, i.e. for any two distinct entries,

one is necessarily smaller than the other (for the given ordering). For software components, we

could not identify such a total ordering relation; hence, as a substitute, we de�ned a partial ordering

relation, namely the re�nement ordering. This gives our repository a lattice-like structure, where

nodes represent speci�cations; and programs are attached to speci�cations in such a way that each

program is attached to the highest speci�cation with respect to which it is correct. This integrity

constraint must be maintained by all database operations. As an example of a database structure,

see in �gure 1 the database obtained by storing a number of Pascal compilers, whose de�nition is

given in [2]. Each node in this graph represents a speci�cation; to each node we attach programs

that are correct with respect to the speci�cation that this node represents (these are not shown in

the �gure).

Storage and retrieval operations consist of navigating through a graph structure, matching the

(storage or retrieval) key against nodes of the graph. Each node of the graph is represented by

a Unix �le which contains an Otter formula that de�nes the speci�cation at hand, as well as

information on neighboring nodes in the graph, and information on programs that are attached to

this node.

The navigation through the graph is carried out by traditional graph traversal algorithms |which

we have implemented in C under Unix. The matching of the (storage or retrieval) key against the

current node is carried out in two steps: �rst we generate an Otter theorem that states that the

key is a re�nement of the current node; then we submit this theorem to the Otter theorem prover

and await its result. The theorem prover and our C program interact to determine the result and

act accordingly.

Whenever exact retrieval fails, the user has the option of invoking approximate retrieval. Approx-

imate retrieval is de�ned in terms of a measure of functional proximity between speci�cations,

which measures how close two speci�cations are by assessing how much information they have in

Mittermeir- 3



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

Figure 1: A Repository of Pascal Compilers

common. We have determined that a lattice operator, namely the meet (greatest lower bound)

captures precisely the amount of information that two speci�cations have in common. The algo-

rithm of approximate retrieval for a given retrieval key k proceeds by computing the meet of k

with nodes in the graph, and identifying those noodes that maximize the meet with k (i.e. that

have most common information with k). In the compiler example, the graph that we obtain by

computing the meet of all nodes with k, for some retrieval k which is given in [2], is shown in �gure

2. Note that this is obtained from the original graph by collapsing its two layers: whenever two

nodes are collapsed, we can conclude that they di�er by functional properties that are irrelevant

as far as k is concerned; i.e. as far as k is concerned, one node is as good as another. In practice,

this algorithm has given results that are quite satisfactory to the intuition.

3 Comparison

Our work deals with the problem of storing and retrieving software components using a formal

speci�cation approach. As such, it must be compared with alternative methods of storage and

retrieval of software components as well as alternative methods of software reuse based on formal

speci�cations.

Alternative methods of storage and retrieval of software components include the facetted approach,

due to Prieto-Diaz and Freeman [8], the linguistic approach, due to Hall et al [9], and the cogni-

tive approach, due to Maiden and Sutcli�e [10]. All these approaches are inspired from retrieval

techniques of library science, and carry the usual drawbacks of natural language methods.

Alternative methods of using formal speci�cations for the purpose of software reuse include work

Mittermeir- 4



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

o

o

o

o

o

o

Figure 2: Ordering Nodes by their Proximity to k.

by Moineau and Gaudel [11] as well as work by Srinivas and Goldberg [12]. We di�er from both

of these proposals by the formal speci�cations background that we use: ours is relational, dealing

primarily with functional descriptions of software components, whereas the alternative proposals

use algerbraic speci�cations, dealing with descriptions of software components as state bearing

modules. Furthermore we di�er from the work of Srinivas by the fact that we concentrate on reusing

software products, whereas they focus on reusing software processes (e.g. previously recorded design

scenarii).

References

[1] R. M. A. Mili and R. Mittermeir, \A formal approach to software reuse: Design and imple-

mentation," in Proceedings, Fifth Workshop on Software Reuse, 1992.

[2] A. M. N. Boudriga and R. Mittermeir, \Semantic-based software retrieval to support rapid

prototyping," Structured Programming, vol. 13, pp. 109{127, 1992.

[3] P. Collins, \Considering corporate culture in institutionalizing reuse," in Proceedings, Fifth

Workshop on Software Reuse, 1992.

[4] S. Fraser, \Reuse by design- a team approach," in Proceedings, Fifth Workshop on Software

Reuse, 1992.

[5] M. Griss, \A multi-disciplinary software reuse research program," in Proceedings, Fifth Work-

shop on Software Reuse, 1992.

[6] K. Wentzel, \Software reuse- it's a business," in Proceedings, Fifth Workshop on Software

Reuse, 1992.

Mittermeir- 5



[7] J. Guttag and J. Horning, Larch: Languages and Tools for Formal Speci�cation. New York,

NY: Springer Verlag, 1993.

[8] R. Prieto-Diaz and P. Freeman, \Classifying software for reusability," IEEE Software, vol. 4,

no. 1, pp. 6{16, 1987.

[9] C. B. P.A.V. Hall and J. Zhang, \Practitioner: Pragmatic support for the reuse use of concepts

in existing software," in Software Reuse, Utrecht 1989 (L. Dusink and P. Hall, eds.), pp. 97{108,

Springer-Verlag, 1991.

[10] N. Maiden and A. Sutcli�e, \Reuse of analogous speci�cations during requirements analysis,"

in Proceedings, sixth International Workshop on Software Speci�cation and Design, (Como,

Italy), pp. 220{223, 1991.

[11] T. Moineau and M. Gaudel, \Software reusability through formal speci�cations," in Proceed-

ings, First International Workshop on Software Reusability (J. C. R. Prieto-Diaz, W. Schaefer

and S. Wolf, eds.), no. Memo Nr 57 in UniDo, (Dortmund), 1991.

[12] Y. Srinivas and A. Goldberg, \Replay of derivation histories in kids," in Proceedings, Fifth

Workshop on Software Reuse, 1992.

4 Biography

Roland Mittermeir is professor at the Institut f�ur Informatik at the Universit�at Klagenfurt, Aus-

tria. Among his early work on software reuse is the design of the "Software Base"-Concept, now

implemented in the AUGUSTA environment. Recently, he has also worked on implementing reuse

concepts in medium sized software companies. Prof. Mittermeir holds degrees from the Wirtschaft-

suniversit�at Wien and the Technische Universit�at Wien.

Rym Mili holds a doctorate of specialty from the University of Tunis, Tunisia, and is currently

working towards a PhD at the University of Ottawa under the supervision of Professor Robert L.

Probert. Her research interests are software speci�cations, software testing, and software reuse.

Ali Mili holds a PhD in computer science from the University of Illinois at Urbana Champaign.

His research interests are software speci�cations, program construction and software reuse.

Mittermeir- 6


