
Maximizing Reuse with an Evolution Oriented Domain Engineering

Guillermo Mayobre

Hewlett Packard

Grenoble Networks Division

5, Ave Raymond Chanas

38053 Grenoble CEDEX 9

France

Email: gm@hpgntol1.grenoble.hp.com

Abstract

Software development on the context of domain of application (domain focussed software

development) may be seen as evolutionary development were software representing core domain

concepts are extended/adapted to meet new product requirements. On such a context, man-

aging the evolution of existing software is key to keep development costs under control. An

evolution oriented domain engineering including a domain analysis phase with special focus on

the identi�cation/prediction and characterization of the variability, provides a framework to

successfully master the evolution of software.

This paper summarizes some of the results carried out on the context of the European

Research project PROTEUS (ESPRIT project 6086), together with some practical results from

the software reuse program at the Hewlett Packard Grenoble Networks Division.

Keywords: Domain, variant, invariant, impact analysis, evolutiveness, adaptive, cohesiveness

with respect to variability, model predictability, model coverage, taxonomy of variability, spe-

cialization attribute, factors of variability.

Mayobre- 1



1 Background

Domain oriented product development is today one of the prevalent ways of developing products.

Corporations, companies, must of the organizations are almost organized around product lines or

domains of applications. Simply because this is the most natural way of centralizing, capitalizing

and maximizing the reuse of knowledge. Naturally the solution space corresponding to this domain

oriented organization of the problem space is also domain oriented.

Applications of the domain represents speci�c solutions to the problem space. They are usually built

on an incremental manner, evolving from the existing software. A part of their software represents

core functionality of the domain, usually shared between several applications, and another part

represents speci�c functionality.

What is important, is to abstract, from those speci�c solutions, generic speci�cations to derivate

reusable, generic, highly evolutive, solutions to be able to implement new requirements/functionality

within the domain at the lowest possible cost.

Up to now, most of the existing domain analysis approaches aim at preparing reuse by focussing

on the identi�cation of the common, invariant parts of the systems in the domain. The approach

presented in this paper puts a strong emphasis on the identi�cation/prediction and characterization

of the variability, essential to master evolution. (Mechanisms dedicated to the identi�cation of the

invariant part are not described here, they are based on the common methodological framework

that underlies current methods).

2 Position

2.1 Classifying Functionality

Functionality involved in the development of new systems may be classi�ed in two categories.: In-

variant and Variant. [1] Invariant functionality is the set of components or components fragments

that are used without changes. It provides the kernel of functionality around which new systems

are built. By de�nition invariant functionality cannot create new systems since it lacks the cus-

tomization needed to meet new requirements. Variant functionality is the set new functionality

that must be added/changed to customize invariant components. It provides novel functionality

to address new needs. On domain focussed software development, invariant functionality usually

represents domain commonalities, core functionality of the domain, that are reproduced from one

application to another. Variant functionality is usually added or replaced in an incremental manner

and represents a small percentage of the total implemented functionality of the system. This way

of development is usually called an incremental evolutionary software development process.

An adaptive software development strategy is extremely well adapted to be used in this context.

Such a strategy uses large frame structures as invariants (supporting the invariant functionality)

and restricts variability to low level isolated locations within the overall structure. As it attempts

to keep most of the overall structure invariant, adaptive strategy helps to keep development costs

under control when reusing or leveraging invariant functionality from one existing system to the

new one. However, because it also tend to be application speci�c and relatively in
exible, it may

burden the cost of addition of variant functionality, increasing the overall costs of development of

new systems.

Mayobre- 2



To avoid this situation and minimize the costs of addition of variant functionality we need to

add 
exibility to those selected locations within the overall structure where variant functionality

is to be plugged. In other words, the key point to master evolutionary software development is

the creation of an evolution infrastructure (set of methods, tools and operating practices) that

minimizes both, the cost of reusing/leveraging invariant functionality and the cost of addition of

variant functionality. Methods and tools are those involved in the domain engineering activity. By

operating practices we understood the set of well known rules and mechanisms that allow to obtain

results on a systematic and repeatable way.

2.2 The Evolution Oriented Domain Engineering

It consist basically on three main activities:

1. Evolution speci�cation,

2. Evolution control,

3. Instance implementation.

The evolution speci�cation activity consists on the domain analysis, the domain modeling and

the domain architectural design processes. We made the distinction between the domain analysis

process referring to the activities of collecting and classifying data, and the domain modelling

process as referring to the design of a formal structure for the descriptions. The combined results

of those activities are the domain speci�cations model, and the taxonomy of domain variability.

By domain speci�cations model we understood the de�nition of entities, operations, relationships

and events that abstracts domain commonalities and variances across the systems, together with a

classi�cation of them. [2].

The result of the architectural design activity is the domain architectural model that represents

the generic architecture (or set of architectures) of the domain from where speci�c instances are

derived. The contribution of our approach is that a particular emphasis is put on the identi�ca-

tion/prediction and characterization of variability, as we consider it is crucial to specify evolution.

The taxonomy of domain variability is used to encode variance on the model through the special-

ization attributes. Each variance is represented by a set of di�erent values of the specialization

attributes. An instance (speci�c application of the domain) may be obtained by assigning a vector

of values to the specialization attributes.

The evolution control activity characterizes the evolution induced by a new requirement according

to a taxonomy of variability. In that activity, the new requirement is �rst translated into a set of

specialization attributes. (i.e. on the network management domain of application, extending the

management to support a new type of device, may impact specialization attributes like: manage-

ment protocol, bu�er management subsystem, line throughput performance,...) Then, a vector of

values is assigned to the identi�ed specialization attributes characterizing the instance to be im-

plemented. (i.e. associates values to the already identi�ed specialization attributes: management

protocol = CMIP, bu�er management subsystem = class 4, line throughput performance = 800

Mbit/sec, ... ) Finally, if needed, models (domain speci�cation and domain architectural) and

taxonomy of variability are updated to include un-predicted, partially predicted or predicted and

partially implemented variances. Note that this last operation is done only if the evaluation of

bene�ts induced by the modi�cations appears to be greater than the costs of updating.

Mayobre- 3



The instance implementation activity, is responsible for the implementation of the speci�c appli-

cation to meet the new requirement. It extracts from the domain architectural model the speci�c

architecture of the application to be implemented, identi�ed in the previous step by the set of

values assigned to the specialization attributes, and gets the corresponding speci�c design. This

speci�c design is generally incomplete. It is composed of an implemented part representing the

already implemented core functionality of the domain, and a not implemented part representing

the not yet implemented core functionality of the domain and the not yet implemented variant

functionality corresponding to the variability induced by the new requirement.

According to this situation, an implementation strategy is de�ned that may be summarized as

follows:

� reuse already implemented large frames of software, corresponding to the invariant function-

ality, involved in the implementation of this speci�c instance,

� develop reusable software corresponding to the not yet implemented core functionality (typ-

ically by using a classical engineering for reuse approach, supported by the existing domain

models), and

� implement speci�c variability maximizing the external reuse level. At this stage, a classical

Design With Reuse approach should be used. Components to be reused may come for the

software associated to the domain of application, from others domains or from general purpose

libraries.

2.3 Identifying/Predicting and Characterizing Variability

The identi�cation/prediction and characterization of variability are key mechanisms of the evolution

oriented domain engineering process.

Identi�cation/Prediction deals with evaluating factors of variability that in
uences variations in

requirements within the domain of application. Among the most important are:

Market characterization : evolution and potential for expansion. Variations in functionality

are mainly induced by market trends and market opportunities on mature domains, and

by customer requirements on immature or new domains. Market expansion may also be a

factor inducing changes in requirements: a growing market may result on a more competitive

environment were the reduction of implementation costs of already existing functionality

may conduct to changes on requirements (changes in hardware platforms, performances ...).

Market analysis and customer characterization (of representative customers) are valuable

mechanisms to predict changes/evolutions in functionality.

Technology evolution : Provides information on the number of instances that may be reused

without any technology change and/or the level of abstraction required by the descriptions

on the domain models to be technology independent.

Level of standardization : Is at the inverse of the two precedent a factor of stability. The

highest the level the lower the variability. It may be used to isolate areas of the domain were

the evolution will be none, a few or at least easily predicted. Those areas represents kernels

of stable functionality around which variability may be articulated.

The taxonomy of variability results from the classi�cation of variations identi�ed during the evalu-

ation of factors of variability. To each of the elements of the taxonomy, a factor of risk is associated,

Mayobre- 4



that evaluates its probability of occurrence. During the characterization, each of the elements of

the taxonomy of variability is mapped to the set of corresponding speci�cation attributes in the

domain models. As a result, an internal variability map associating a level of variability to each

specialization attribute and risk of occurrence to each of the instances of the specialization at-

tribute is obtained. The level of variability of a specialization attribute is the number of di�erent

instances (represented by di�erent values) associated to it. The risk of occurrence of an instance

of the specialization attribute is the level of con�dence associated to the prediction of occurrence

of that instance.

What is extremely important is to build/modify the models, according to the internal variabil-

ity map, to isolate specialization attributes with a high level of variability, group specialization

attributes with low level of variability and de�ne a strategy of implementation. The level of vari-

ability provides useful information to:

� Isolate specialization attributes with high level of variability into separate locations, what

tends to minimize the cost of implementation of variability. The property of restricting high

level of variability to isolated locations within the overall structure is what we call the model

cohesiveness against variability.

� Group specialization attributes with low level of variability, what tends to increase the in-

variants areas of the model, de�ned when identifying common/stables parts of the systems

in the domain, and by the way, contributes to maximize the reuse of large frames of soft-

ware between applications. The risk of occurrence of an instance of a specialization attribute

provides information to establish a strategy of implementation:

{ the higher the level of con�dence associated to a prediction of variability, the lower the

level of abstraction in the speci�cation of the corresponding software.

{ the lower the level of con�dence associated to a prediction of variability, the higher the

level of abstraction in the speci�cation of the corresponding software.

� Prediction of occurence of variability in the time provides complementary information for the

implementation schedule.

3 Comparison

3.1 Modeling and Representing Domain Concepts

It is extremely recommended to adopt an object oriented approach to build domain models. Essen-

tially because the concepts of abstraction/specialization (to capture commonalities and encapsulate

variances), aggregation/decomposition (to master the complexity) and di�erentiation, critical to

represent domain knowledge, are inherent to the OO representation. [3]

3.2 Qualifying Domain Models

The rules of construction of the models described above, leads naturally to de�ne the following

metrics, to qualify domain models:

Mayobre- 5



Model coverage : Is the ability to provide reusable software measured by the amount of core

functionality to be implemented by new applications that may be reused from the invariant

part of the model.

Model predictability : Is the capability to predict/anticipate variance, measured by the cohe-

siveness (ability to locate variability on isolated areas of the model) and the costs of devel-

opment anticipated by the strategy of implementation.

The already de�ned metrics involves lower level metrics such as software development productivity

and component and system costs of reusable software [4, 5, 6]. Note that the model coverage and

model predictability, inderectly measures , the cost bene�ts of reusing invariants and the cost of

implementing variant, both key costs of the evolutionary software development.

A natural question rises here: what if for a new un-predicted variant, models show a poor coverage

and a bad predictability? The �rst point to verify, is if the variant is outside of the prede�ned

domain boundaries. If it is not the case and the variant is not an isolated example, but rather

than that, it predicts a set of variabilities of the same type to arrive, domain models should be

re-considered and a new step of domain engineering will probably be necessary. [7]

3.3 Conclusion and Further Investigation Directions

Up to now at Hewlett Packard Grenoble Networks Division we mostly experienced two approaches

of reuse, the a-posteriori (or reverse engineering) and the a-priori (or domain reuse). They are

essentially di�erent on the process and results.

The a-posteriori approach is simpler, provides immediate return on investment and requires a lower

level of reuse culture on the organization. As a drawback, the return on investment is burden by the

adaptation costs induced by the re-engineering of components not initially designed to be reusable.

The a-priori approach is more di�cult and risky and requires a higher level of reuse culture of the

organization. But it presents the advantage of providing high return on investment.

A natural way to introduce reuse in an organization is to start with the a-posteriori approach

to build con�dence and create success stories and to migrate incrementally to the a-priori as the

culture on reuse increase and the change is accepted. We are now using both approaches and

by comparison the a-priori approach is about three times better in terms of ROI than the a-

posteriori. However, even in the best cases using an a-priori approach we were able to establish

that the most limitative factor of the ROI are the un-predicted domain variances, that invalidates

domain models by inducing important costs of addition of variant functionality. And obviously,

the longer the domain life cycle the higher the risk. We believe, as con�rmed by several �rst

results, that an evolutionary software development approach, supported by an evolution oriented

domain engineering, with a special focus on the identi�cation/prediction and characterization of

variability, really contributes to maximize reuse return on investments on the context of domain

focussed software development.

Among the further directions of the research are:

� enhance the mechanisms of identi�cation/prediction and characterization of variability to-

gether with their formalization,

� enhance the traceability of variability to increase the accuracy of impact analysis and record

the evolution knowledge,

Mayobre- 6



� provide appropriate tools to support the traceability of variability (research on the area of

hypertext based tools),

� extension/tuning of the reuse economical costs models, used as decisions tools by the intensive

computation of object oriented productivity metrics involved on them.

Further research activities will be done on the context of the European Research ESPRIT project

PROTEUS, and in close collaboration with Hewlett Packard Corporate Engineering and Hewlett

Packard Laboratories. The areas of technology transfer are essentially Hewlett Packard opera-

tional divisions and some European companies member of the PROTEUS consortium. Domain of

applications were this evolutionary approach is being applied today are Telecommunication and

Datatcommunication Networks, and Aerospace applications.

References

[1] Barness and Bollinger, \Making Reuse Cost E�ective," IEEE Software, January 1991.

[2] R. P. Diaz and G. Arango, \Domain Analysis and Software Modelling," in IEEE Computer

Society Press Tutorial, IEEE Computer Society Press, 1991.

[3] J. Rambough and All, Object Oriented Modelling and Design. Prentice-Hall, 1991.

[4] D. Balda and D. A. Gustafson, \Cost Estimation Models for the Reuse and Prototype Software

Development Life Cycle," ACM Sigsoft Software Engineering Notes, vol. 15, p. 42, July 1990.

[5] G. Mayobre, \Using Code Reusability Analysis to Identify Reusable Components from SW

Related to an Application Domain," in WISR 1991 Proceedings, Department of Computer

Science, University of Maine, 1991.

[6] Caldeira and Basili, \Identifying and Qualifying Reusable Software Components," IEEE Com-

puter, February 1991.

[7] B. Boehm, \A Spiral Model of Software Development and Improvment," IEEE Computer,

vol. 21, May 1988.

Mayobre- 7


