
Frameworks Versus Libraries: A Dichotomy of Reuse Strategies

Mitchell D. Lubars

Electronic Data Systems, Research and Development

1601 Rio Grande, Suite 500

Austin, TX 78701

Tel: (512) 477-1892

Email: lubars@austin.eds.com

Neil Iscoe

Electronic Data Systems, Research and Development

1601 Rio Grande, Suite 500

Austin, TX 78701

Tel: (512) 477-1892

Email: iscoe@austin.eds.com

Abstract

In general, setting up reuse libraries for random collections of software components has

not been a very e�ective reuse strategy for software organizations. Rather, most examples

of successful reuse libraries actually consists of reusable components that are structured and

organized according to well-de�ned frameworks for their use. Often these frameworks correspond

to reusable architectures in a particular application domain, a common set of experiences in the

software community, a set of standards or protocols, or a well-structured system layer. One

situation where reuse with a random collections of components does seem to payo�, however,

is in the reuse of large scale components in a very large community, such as that supported

by the Internet through FTP sites and shareware. This position paper discusses the problems

with random reuse libraries and the advantages o�ered by focusing on frameworks and domain

analysis for reusability.

Keywords: Reuse, framework, library, component

Workshop Goals: Networking, Advance state of theory.

Working Groups: Domain analysis/engineering, Design guidelines for reuse, Reuse and OO

methods, Reuse and formal methods, Tools and environments, Reuse handbook, Education.

Lubars- 1



1 Background

The majority of our involvement in software reuse has been concerned with constructing systems

to support software design reuse and researching domain analysis techniques and representations

to develop reusable software. The design reuse systems, IDeA, ROSE-1, and ROSE-2, contain

collections of design schemas, each of which is an abstract reusable design, similar in principle to

reusable software architectures and frameworks. The user interface system CRTForm is based on a

framework of language-independent functions that provide a �rewall between users and application

programs.

We are currently investigating domain modeling representations to express commonality in business-

related application areas and exploring the use of formal techniques to check the consistency of the

domain models and to use the models for generating domain-speci�c programs.

2 Position

2.1 Introduction

For many years now, a popular approach for starting a reuse program at an organization has been

to set up a reuse library mechanism and encourage developers to contribute components to the

library and search the library for components that they need in new situations. In some cases,

organizations have set up elaborate incentive programs to encourage people to contribute compo-

nents (usually functions or classes) to and to look for components in those libraries. Anecdotal

evidence suggests that where these e�orts have focused on random and spontaneous contributions

of small components, the e�orts have not generally been successful. The major reasons for this lack

of success are two fold.

1. A random collection of reusable components cannot be expected to seamlessly �t together

with the other components that someone is developing.

2. The e�ort to search a large collection of random components is frequently not worth the

expected reward (partly because of the �rst point).

Where reuse programs have been most successful, the reusable components were generally con-

structed and organized according to a well-de�ned framework, either through a careful domain

analysis of an application domain, or through evolution of a large base of experience over the years.

There is one intermediate reuse situation, however, where reuse libraries of randomly contributed

components do seem to have high success rates. This is where the granularity of the reusable

components is very large, such as in the size of a subsystem, supporting application domain, or

a complete mini-framework. There is signi�cant anecdotal evidence to support the importance of

this kind of reuse. In particular, the browsing of FTP sites, distribution of shareware, and simple

cataloging schemes like Archie show that this type of reuse occurs at signi�cant levels.

This position paper discusses some of the properties and advantages of the reuse situations, and

its rami�cations for library approaches.

Lubars- 2



2.2 The Problems with Most Random Reuse Libraries

When starting a reuse program in an organization, a very tempting technique is to create a library,

provide some mechanisms for classifying the components and browsing the library, declare that the

library exists, and encourage developers to contribute components. These components are usually

subroutines, functions, or classes. One theory is that as the library grows, the chances will increase

that components that a programmer needs will be available in the library. That will increase the

likelihood that the programmer will look in the library for desirable components, instead of writing

them himself.

Often there is little intrinsic incentive to contribute to the library, so the organization may create

extrinsic incentives to encourage programmers to contribute their code, such as providing cash

rewards. One of the problems that can result from this is that the library can �ll up with lots of

random, even poorly written, code that most programmers will never reuse. Techniques to deal

with these problems include library administrators to regulate what goes in the library, librarians

to provide assistance, review boards to review the quality of reusable components, and elaborate

classi�cation schemes to organize the library material.

Although these techniques help somewhat, they don't address the real problem which is that any

random piece of code, no matter how reusable and well-written, is unlikely to be reusable by itself

in a new program. To be reused, the code often requires many other pieces of code to be reused at

the same time or require that a lot of additional code be written to make the reused code �t into

the program.

The underlying situation is that the original code was written to work in some framework that the

programmer had in mind; an architecture for the program he was developing or some understanding

about how many pieces of code work together to accomplish an objective. While it is true that

high cohesion and low coupling increase the reusability of a piece of software, it is unusual that any

small piece of code accomplishes something useful completely on its own. The way that the piece is

used, and how it interfaces to the other components, is embedded in the framework for that piece.

Often object-oriented advocates say that objects are inherently reusable and object-oriented pro-

gramming techniques promote reusability. There is some truth to this in that objects package a set

of related methods together so that each object embodies a mini-framework. However, this usually

isn't enough, since an object-oriented program consists of a large set of collaborating objects to

accomplish shared responsibilities. In this view, individual objects are often not reusable unless

their object-oriented framework and related objects are also reused. A single object is still rarely

reusable all by itself.

2.3 What is a Software Framework?

A framework is a set of principles that describe how a set of software components interact with

one another to accomplish a set of shared responsibilities. Often frameworks are considered to

be synonymous with architectures. There is a subtle distinction, however. An architecture is

concerned more with the physical layout, such as allocation to modules, processes and processors,

the aggregation and scoping of components, and the physical nature of communication between

the pieces. Frameworks are more concerned with the conceptual nature and conventions of the

communication between the pieces and their inter-dependencies. Both frameworks and architectures

are related to one another and both a�ect reusability. For the purpose of this discussion, framework

will be used to generally refer to all communication and dependency issues (both conceptual and

Lubars- 3



physical).

There are also several varieties of frameworks, which focus on di�erent kinds of dependency and

communication issues. Some are more concerned with constructing components that work together

as units to accomplish higher-level responsibilities. These often correspond to modules, or program

subsystems, or supporting domains. For example, frameworks may be available for constructing

databases, device drivers, or �le systems. These frameworks normally prescribe ways that the

components must be interconnected to solve problems. They also tend to be rather application-

speci�c.

Most object-oriented frameworks [1, 2] are of this type. They de�ne the abstract classes that must

be in the system and the protocol that must be supported between those classes. Each concrete

class must support the protocol and a set of such concrete classes must be reused together to

support the framework. A given concrete class is not reusable by itself, because it only provides

part of the framework's protocol.

Another type of framework de�nes a set of components that may be used together to solve prob-

lems, but it is up to the user to compose the components together. Often these frameworks are

constructed to provide an orthogonal, but composable, set of behaviors. Typical examples are

well-engineered subroutine or class libraries, such as math libraries, window-system libraries, and

statistical packages. Usually these frameworks can be thought of as providing a layer, abstract

machine, or supporting domain in a complex system.

Another type of framework de�nes and enforces a set of standards in some domain. Toolkits,

such as Motif, which supports a common look and feel, or protocol-supporting libraries are typical

examples of these frameworks. These frameworks may also be thought of as providing a layer or

supporting domain in a complex system, with additional supporting policy.

2.4 Most Successful Reuse Libraries are Frameworks in Disguise

Most examples of successful reuse libraries are actually well-engineered frameworks, rather than

random reuse libraries. Math libraries and statistical packages are based on a mature understanding

of subject matter, which has evolved over many years. Well before the packages were written, there

was general agreement in the math and engineering communities of what the useful functions would

be. Providing consistent typing and nomenclature further makes these libraries into a coherent

framework. Had the functions been provided in a library, but with random interfaces, the functions

would have been considerably less reusable.

Similarly, data structure function and class libraries support frameworks. The set of useful data

structure and common operations on them (such as searching and sorting) have been well-known

and taught for many years. In addition, providing some unifying principles, such as viewing them

as di�erent kinds of collections with some common attributes and operations, further strengthens

the framework. When someone reuses a data structure, he is not reusing a single class or a small

set of functions, but he is reusing the knowledge of the data structure and the set of principles for

using data structures that he shares with all other computer scientists.

Many other examples of reuse success stories, such as the Toshiba software factory [3] and similar

examples in Japan and the U.S. [4], are also really framework successes. These successes occur in

application domains in which the organizations have considerable experience in developing similar

applications. Over the years, a framework (or architecture) is developed for the application domain,

Lubars- 4



which is embodied in the expertise of the developers. When these developers contribute components

to the reuse library, they are not contributing random components. Instead they are contributing

components that they know will �t within the framework for their domain.

Similarly, when developers look for reusable components, they are looking for something that

�ts into a speci�c portion of the framework. They are not browsing through a large collection

of randomly contributed components. Thus, cataloging components and searching through the

framework-supporting library are not serious problems, as they might be for a random reuse library.

2.5 Reuse of Random Large Scale Components

The general thesis of this position paper has been that reuse of a random collection of software

components does not work well. There is, however, a signi�cant counter-example. That example

has to do with reuse of random software components across the Internet and through shareware.

Many reusable pieces of software are available at a variety of FTP sites across the U.S. and even

other countries. Many people regularly browse these FTP sites looking for reusable software. In

some cases, they are looking for software to meet a speci�c need, and in some cases they are simply

looking for interesting software that they might experiment with and maybe �nd a use for later

on. There are some primitive means for cataloging and organizing this information, such as local

hierarchical �le system structures at each FTP site and Archie for cataloging and querying.

Other reusable software is available through computer news groups, distribution tapes, and other

shareware sources. Much of this software is poorly cataloged, if cataloged at all. Yet people go to

the trouble to make it available and search it for useful components.

The big question is why is this completely ad hoc and voluntary reuse process successful when

so many attempts to set up random reuse libraries in organizations have failed? There are three

primary reasons for its success.

1. Each component embodies a framework so that it can usually be reused by itself. The

components do not require reusing a signi�cant set of other components at the same time.

2. The components are rather large. It would take a substantial amount of work and time to

reconstruct the components from scratch.

3. The availability of the reusable components is almost unlimited, but the actual reuse rates are

small. However, taken together these variables make the absolute amount of reuse signi�cant.

The fact that the components are large-scale is signi�cant. People are much more willing to look

for a reusable piece of software in a random collection that will save them a substantial amount of

development e�ort, than they are for a small function or object. But this by itself is not su�cient.

In addition, the component must stand-alone. It must, by itself, embody a useful framework

that people want to reuse, such as a graphic editor, a paint program, a spreadsheet program, a

protocol library, a language interpretor, a compiler, or a window toolkit. Frequently, these large

scale reusable components correspond to supporting domains, modules, or subsystems. In many

cases, people are even more interested in reusing the frameworks than the actual code. They are

interested in how the editor works or what the protocol is, rather than (or in addition to) the code.

These issues together provide a large granularity of reusability.

Lubars- 5



The wide availability of the code is also signi�cant. First, because the code is so widely distributed,

there is often some increased con�dence (even though this is often misguided) that the code is widely

used and perhaps more reliable than code in a more localized random library. This increases the

chance that people are willing to try it out. Even if it doesn't work right, there is a belief that

someone will soon post a �x or an improved version of it. A corollary to this principle is that if

someone is willing to distribute their software that widely, they must have a signi�cant level of

pride in it, and they must have spent a lot of time to engineer it for reusability.

Another consequence of the wide availability is that if only one out of 1000 programmers who have

access to the software uses it, that would amount to very signi�cant reuse. That is simply not true

for reuse libraries in any single organization. For most organizations, if one out of 1000 programmers

reuse any software component in the library, the library would be considered a dismal failure. Indeed

it is likely that reuse rates for most reusable components in the Internet and shareware sources are

quite low; much lower than would be cost e�ective within any one organization.

2.6 Conclusions

The overall conclusion of this position paper is that organizations that are interested in starting a

reuse program should not attempt to construct a library and populate it with a random collection

of reusable components. Rather, they should conduct a domain analysis of their application domain

(or domains) to determine a framework or architecture for the domain, and then only construct

reusable components that �t within that framework. If they take this approach, then the problems

of cataloging, searching, and retrieving components in a library can be reduced or even obviated.

These conclusions are not particularly novel, as is evidenced by the increasing interest in domain

analysis in recent years [5, 6, 7, 8]. Unfortunately, there still tend to be many examples of organi-

zations and researchers heading back down the path of building better tools and techniques to aid

in constructing yet more random reuse libraries. This is witnessed by a continuing stream of new

papers in the literature and questions on harvesting reusable components from poor legacy code,

new variations of software cataloging and retrieval techniques, and new incentive strategies to make

programmers contribute to reuse libraries. Many of these e�orts could be better directed to helping

organizations discover the frameworks underlying their application domains and engineering the

components to work together within the framework, or to constructing and organizing large-scale

reusable components in the software community at large.

3 Comparison

The framework concepts presented in this position paper are similar to the object-oriented frame-

works advocated by Peter Deutsch [1], Johnson and Foot [2], and others. Another similar area

is that of domain-speci�c software architectures (DSSA), which provide reusable architectures for

speci�c application domains.

The design schemas that are used in the IDeA [9], ROSE-1 [10], and ROSE-2 [11] design reuse

systems are also similar to frameworks. In addition, they contain constraints and inference rules to

choose consistent design components and semi-automatically customize abstract designs. Similar

techniques to reusable design schemas include the plan calculus techniques used in the Programmer's

Apprentice project [12] and subsequent work including the Requirement's Apprentice [13].

Lubars- 6



The user interface system CRTForm [14] is also based on a framework, supplying language-independent

functions that provide a �rewall between users and application programs. Another framework-based

software reuse system that is similar to IDeA, ROSE-1, ROSE-2, and CRTForm is GENESIS [15],

which generates di�erent kinds of databases systems based on a reusable database architecture.

Our domain modeling work at the EDS Research Lab is also similar to other work in object-

oriented frameworks, but focuses more on the data modeling aspects of frameworks, such as the

data constraints and rules that apply to all programs within an application domain.

References

[1] L. Deutsch, \Design Reuse and Frameworks in the Smalltalk-80 System," in Software Reusabil-

ity Volume II: Applications and Experience (T. J. Biggersta� and A. J. Perlis, eds.), pp. 57{71,

Addison Wesley, 1989.

[2] R. Johnson and B. Foot, \Designing Reusable Classes," Journal of Object-Oriented Program-

ming, vol. 2, pp. 22{35, June/July 1988.

[3] Y. Matsumoto, \Some Experiences in Promoting Reusable Software: Presentation in Higher

Abstract Levels," in Software Reusability Volume II: Applications and Experience (T. J. Big-

gersta� and A. J. Perlis, eds.), pp. 157{185, Addison Wesley, 1989.

[4] R. Lanergan and C. Grasso, \Software Engineering with Reusable Design and Code," IEEE

Transactions on Software Engineering, vol. SE-10, pp. 498{501, September 1984.

[5] R. Prieto-Diaz, \Domain Analysis for Reusability," in Proceedings of COMPSAC '87, pp. 23{

29, 1987.

[6] G. Arango, \Domain Analysis: From Art to Engineering Discipline," in Proceedings Fifth

International Workshop on Software Speci�cation and Design, pp. 152{159, May 19-20 1989.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, \Feature-Oriented Domain Analysis

(FODA) Feasibility Study," Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute,

November 1990.

[8] M. Lubars, \Domain Analysis and Domain Engineering in IDeA," in Domain Analysis and

Software systems Modeling (R. Prieto-Diaz and G. Arango, eds.), IEEE Computer Society

Press, 1991.

[9] M. Lubars, \A Knowledge-Based Design Aid for the Construction of Software Systems," Tech.

Rep. UIUCDCS-R-86-1304, Department of Computer Science, University of Illinois, Urbana,

IL., November 1986.

[10] M. Lubars, \Wide-Spectrum Support for Software Reusability," in IEEE Tutorial, Software

Reuse: Emerging Technology (W. Tracz, ed.), pp. 275{281, The Computer Society of the IEEE,

1988.

[11] M. Lubars and M. Harandi, \Addressing Software Reuse Through Knowledge-Based Design,"

in Software Reusability Volume II: Applications and Experience (T. J. Biggersta� and A. J.

Perlis, eds.), Addison Wesley, 1989.

[12] C. Rich, \A Formal Representation for Plans in the Programmer's Apprentice," in Proceedings

of the Seventh International Joint Conference on Arti�cial Intelligence, (Vancouver, Canada),

August 1981.

Lubars- 7



[13] C. Rich, R. Waters, and H. Reubenstein, \Toward a Requirements Apprentice," in Proceedings

of the Fourth International Workshop on Software Speci�cation and Design, (Monterey, CA),

April 1987.

[14] N. Iscoe, \CRTForm: An Object-Oriented Application Development System Using Type and

Type-Type Managers," Tech. Rep. Masters Report, Department of Computer Sciences, Uni-

versity of Texas, Austin, TX., August 1986.

[15] D. Batory and A. Buchmann, \Molecular Objects, Abstract Data Types, and Data Models: A

Framework," in Proceedings of the Tenth International Conference on Very Large Databases,

(Singapore), pp. 172{184, August 1984.

4 Biography

Mitchell D. Lubars is a research scientist at Electronic Data Systems, Research and Development

in Austin Texas. He is part of a team developing a domain modeling language and tools to support

the application-speci�c domain modeling needs within EDS. He also provides part-time consulting

in the areas of software reusability, domain analysis, and object-oriented analysis and design.

Prior to coming to EDS, Dr. Lubars was a member of the technical sta� at MCC for six years,

working in the areas of software design reusability and requirements analysis. While at MCC, he

developed the ROSE-1 and ROSE-2 design reuse systems.

Dr. Lubars received the A.B. degree in biology from Cornell University, in 1977. He received the

M.S. and Ph.D. degrees in computer science from the University of Illinois at Urbana-Champaign,

in 1980 and 1986 respectively. He is a member of the Association for Computing Machinery, the

IEEE Computer Society, and AAAI.

Neil Iscoe is director of the EDS Austin Laboratory for Software Engineering and Computer Sci-

ence, which is part of the Electronic Data Systems Research and Development organization. Prior

to EDS, Iscoe had extensive experience with large industrial applications at MCC (Microelectronics

and Computer Consortium). He conducted �eld studies and performed analyses of large software

projects in application domains such as telephony, command and control, manufacturing, avionics,

and other real time distributed application areas. Prior to MCC, he served as president of Statcom

Corporation, a company that produced and marketed a line of CASE tools and provided consult-

ing services for programming companies. As a founder of the company, Iscoe designed the initial

product and also served as the company's technical director.

Dr. Iscoe received his Ph.D. and M.S. in Computer Sciences from the University of Texas at Austin,

in 1990 and 1988 respectively, and his undergraduate engineering degree from the University of

Wisconsin in Madison in 1977. He serves as an adjunct assistant professor at the University of

Texas.

Lubars- 8


