
Integrating Reuse Into A Software Curriculum

Trudy Levine

Fairleigh Dickinson University

1000 River Road

Teaneck, NJ 07666

Tel: (201) 692-2020 (2261)

Email: levine@sun490.fdu.edu

Abstract

At the 5th International Conference on Software Engineering and Knowledge Engineering

(SEKE'93), a workshop was held on June 18th for the purpose of studying the integration of

reuse into software education. We noted the dearth of software reuse in software engineering

programs and textbooks. Topics were established for further discussion and evaluation.

Keywords: software reuse, software education, reuse education

Workshop Goals: Learning; networking; advancing the state of software education and cur-

riculum with software reuse

Working Groups: reuse education, etc.

Levine- 1



1 Background

1.1 Integrating Reuse Into A Software Curriculum

Consider the following two major questions:

� How can software reuse improve software education?

� How can the study of software reuse be carried into industry?

Software reuse promises to aid in the production of reliable and cost e�cient systems. As such, it

should surely be part of a software curriculum. Even more important, perhaps, is the fact that a

standardized and controlled method of studying reuse, similar to the study of expert work in the

social sciences, can be a valuable tool in computer science education.

For the purpose of software education, software reuse should include reuse of code, speci�cations,

and various types of documentation. In addition, students should be taught and encouraged to

reference previously created systems and to create new software systems at least partially from pre-

viously developed components. This material should be able to be integrated into existing software

engineering and computer science curriculum without major changes. In addition, the construction

of previously developed components should be available for study, to aid in the development of

techniques and talent.

As agreed elsewhere in the conference, as software systems grow in size and complexity there are

increasing occurrences of cost overruns, time overruns, and system failures. Indeed, as more and

more critical functions are controlled by software systems, the dangers of system failures are rather

frightening.

Software reuse can aid system reliability in that integrated components will probably be better

understood, crafted, and tested in the process of designing for reuse. There also can be considerable

cost and time savings if components can be easily located and integrated. That could lead to greater

reliability as well, because it is the time crunch that frequently causes developers to take short cuts

in designing and testing. Of course, we do not think reuse is a software bullet, nor do we think that

it can be achieved easily. We recognize the problems encountered, such as the cost of designing for

reuse and the di�culties (technical, legal, social, etc.) in using components developed outside of

an organization.

Designing for reuse as well as designing with reuse pose particular problems in academia. Teachers

do not wish to put their e�orts into learning a technology that is not yet mature and indeed that may

not even be successful. Particularly in the �eld of computer science, there is so much new technology

to learn daily that teachers must ration their time carefully. Methodologies and standardized

taxonomies, templates, and metrics have not yet been developed. Appropriate textbooks and other

course materials have not yet been produced. The allocation of course time in academia, via

semesters of a few months, may not be appropriate for learning reuse material. And, of course,

grading in academia has traditionally penalized students that \reuse" others' work. Unlike the

social sciences, where students are expected to research good quality work (evaluated by experts

and maintained in a library) and integrate this work into their own with appropriate footnotes,

computer science courses usually have students write code \from scratch." There are exceptions

with C and FORTRAN libraries, for example, but the level of reuse is small and lightly documented.

Levine- 2



2 Position

In trying to answer the two proposed questions, our group made the following suggestions:

1. Each University should establish a component library. Standards are emerging for library in-

teroperability, and these should be adhered to where possible.(See rig@ballston.paramax.com

and ajpo.sei.cmu.edu.) Components of the library can be code, documents, speci�cations,

etc., but standards must be de�ned and maintained in a speci�ed form. For example, module

headers (that include performance characteristics as well as other information speci�ed by

RIG) and test suites of a standard form must be included with all code. Multiple imple-

mentations of the same speci�cation are very valuable, and these should be easy to obtain

if a course includes assignments of components according to speci�cations, and the professor

stores the speci�cation with a few of the best projects (each with possibly di�erent perfor-

mance charcteristics).

A component that is inserted into the library must be approved by a professor of an appro-

priate department and also by a librarian, whose job it is to guarantee that all components

satisfy the prescribed format. Components can only be accessed for reading (perhaps code

stored in source form, so that anyone can copy it, compile it, and execute it, but not change

it in the library). The librarian only will control changes (possibly deletion) if errors are

detected.

Beginner courses in computer science and software engineering should require the use and

documentation of components from this library into assigned projects. New systems would

therefore have modules of others that clearly indicate where, when and by whom they were

developed. Later courses should more thoroughly integrate larger and more varied compo-

nents.

A black box approach [1] is very valuable in industry where it is comparable to engineering

pluggable components. Program instantiations and transformations have equal importance,

similar to the customization of hardware components. Perhaps, however, a white box ap-

proach is most applicable to an educational curriculum spread over a few years. Thus, a

white box approach allows viewing of portions of code, documentations, etc. that illustrate

standards and techniques for users to follow and can be incorporated into new systems as long

as they are appropriately referenced. This process is similar to the analysis and integration

of the research of an English major and has some relevance to art and music education.

2. Encourage faculty development in reuse technology. One of the ways might be to maintain

among ourselves a list of companies that want this technology, so that we can publicize this

information to our colleagues.

3. Encourage development and use of methodologies that support reuse. Object oriented pro-

gramming does appear to be such a technology, although we recognize that it neither does the

whole job, nor comes without a cost. Similar comments can be made about Ada programming.

4. Develop appropriate software projects, possibly covering several semesters.

5. Use existing libraries such as ASSET, CARDS, AJPO.

6. Maintain a list of references to support reuse education in particular. Below are references [1,

2, 3, 4, 5] requested by members of the group. The references where chosen for the speci�c

purpose of reuse education, not for reuse information in general.

Levine- 3



2.1 Group Members

Trudy Levine - FDU 1000 River Road, Teaneck, NJ 07666, levine@sun490.fdu.edu

Zeb Awan - Bell Northern Research, Canada

Armin Beer - Siemens Vienna, Austria

Frank Coyle - SMU, coyle@seas.smu.edu

Jofo Franco - Telebras Rtd Center, Brazil, franco@cpqd.ansp.br

Thomas Hemmann - GMD, hemmann@gmd.de

Masayu� Ishifawa - Hitachi Software Engineering Co., Ltd. ishi@eecs.umich.edu

Trent Jaeger - Michigan U., jaegert@eecs.umich.edu

Mike Laux - Michigan State University, laux@cps.msu.edu

Toshimi Minoura - Oregon State University, minoura@cs.orst.edu

Je�rey Poulin - IBM FSC, poulinj@vnet.ibm.com

David Russell - Penn State Great Valley, rzn@psugv.psu.edu

Angi Voss - GMD, angi.voss@gmd.de

David Wan - National Center for High Performance Computing, c00dcw00@nchc.edu.tw

References

[1] W. Tracz, ed., Software Reuse: Emerging Technology. IEEE Computer Science Press, 1990. (A

compilation of seminal papers).

[2] Proceedings of the lst Reuse Education and Training Workshop, June 18th 1993. Available for

downloading from source.asset.com.

[3] G. Sindre, E. Karlsson, and T. Stalhane, \Software reuse in an Educational Perspective," in

Proceedings of the 1992 Software Engineering Education Conference, Norwegian Institute of

Technology, Springer-Verlag, 1992.

[4] T. Biggersta� and A. Perlis, eds., Software Reusability, vol. 1. Addison Wesley, 1989. (A

compilation of seminal papers).

[5] T. Biggersta� and A. Perlis, eds., Software Reusability, vol. 2. Addison Wesley, 1989. (A

compilation of seminal papers).

3 Biography

Trudy Levine has been writing a column for Ada Letters called Reusable Software Components

since 1990, which has been reprinted in Crosstalk and maintained in several electronic bulletin

boards. She is an Associate Professor of Computer Science at Fairleigh Dickinson and a correspond-

ing member of RIG. She has been trying to augment reuse material in her software engineering

courses over the last few years and has taught a special topics seminar course on software reuse.

Her research interests also include conict control and the Ada programming language.

Levine- 4


