
Cataloging Object Oriented Software Reuse

Doug Lea

SUNY Oswego, Oswego NY 13126 and

NY CASE Center, Syracuse NY 13244-4100

Tel: (315) 341-2688

Email: dl@g.oswego.edu

Fax: (315) 443-4745

Abstract

Object-Oriented design is often said to be a positive factor in reuse. This position paper

attempts to clarify some of the contributing factors and a few problem areas.

Keywords: Reuse, Object-Oriented, Design

Workshop Goals: Learning; networking;

Working Groups: Reuse and OO methods, Reuse and formal methods, Domain analy-

sis/engineering, Design guidelines for reuse - OO

Lea- 1



1 Introduction

Among the many reasons people adopt Object-Oriented (OO) methods is the widely held reputation

for enhancing software reuse. However, many di�erent, even con
icting accounts have been o�ered

in explanation of this reputation. The remainder of this position paper attempts to categorize and

clarify some of the ways in which OO developers obtain reuse.

2 Composition

OO methods support a version of the most basic and essential form of reuse, the combination

of possibly many individual components to serve some aggregate purpose. Object composition is

di�erent in both concept and execution than procedure, function, or module composition. However

it may be used to identical or similar e�ect. In compositional OO design, a developer de�nes a

class whose instances serve as \hosts". Hosts maintain the identities of other \helper" objects and

send them messages in the course of achieving required functionality.

Many variants exist. For example, one common form of composition is often termed \delegation".

Here, any of some subset of messages are simply forwarded (delegated) to the object referred to

by a certain connection link, but the exact object on the other side of the link may change (be

rebound) over time.

Compositional designs may also be categorized with respect to their encapsulation and modularity

properties. Pure closed composition is a form of black box reuse. It is among the safest and most

conservative possible design strategies, due to:

� Outward Closure. Helpers never send messages except simple replies to objects outside some

known scope. Replies never reveal the identities of inner objects.

� Inward Closure. The host maintains the sole link to each helper. The host never reveals

the identities of helpers. No other objects may access the helpers or otherwise exploit their

existence.

ADT-style OO designs rely on closed composition. The success of basic libraries containing many

such black-box components attests to the utility of closed composition in addressing in-the-small

reuse needs.

2.1 Architecture

The above closure restrictions may be lifted either by choice or by necessity, resulting in a continuum

of open composition strategies involving collaboration networks, resource sharing, and larger scale

opportunities for reuse. And larger scale opportunities for disaster: aliasing, interference, and

lack of independence and local veri�ability. These must be dealt with via combinations of design

rules (e.g., access control policies), organizing constructs (e.g. \groups", \roles"), and worst-case

implementation techniques (e.g., locking, atomic transactions). The presence of such dangers,

along with the sheer di�culty of their diagnosis, prevention, and control can be a limiting factor

in successful reuse of individual classes. However, semi-isolated networks in which these factors are

known to be under control are often reusable as a group.

Lea- 2



Moreover, by abstracting over the functionality of a system or subsystem of components, and

only paying attention to their static and dynamic interrelations, one may use/reuse the resulting

design architectures. Architectural reuse ranges from the everyday use of \standard forms" of

static connections (e.g., simple linked lists), to the incorporation of design patterns that represent

solutions to common structuring problems (e.g., model-view-controller designs), to the system-wide

adoption of large-scale architectural frameworks (e.g., software bus, Linda tuple space).

Architectural reuse may or may not involve any actual code reuse. Some architectural elements may

indeed be completely isolated from application-speci�c functionality. The isolation of elements into

nodes and use of parameterized code to construct lists of such nodes represents a familiar example.

Similarly, \protocol objects" such as multicast controllers may be reused in the construction of

group broadcast designs without regard for the contents of multicast messages.

However, there may be at least an equal number of examples in which no code reuse is possible.

For example, OO components assisting in the construction of many general graph structures seem

little used, perhaps because of typical application-speci�city of node and edge semantics. Instead,

the general ideas are manually adapted to the situations at hand. It is not clear (and not worth

debating) where to draw the line between this form of reuse and the application of \general design

knowledge".

3 Inheritance

3.1 Classes as Speci�cations

Class constructs provide developers the opportunity to declaratively specify the behaviors of objects.

While there is an enormous range in support for declarative speci�cation, nearly all methods,

languages, database tools, etc., possess some means of indicating what objects do without saying

how they do it, or at least without allowing other software to depend on how they do it. Constructs

may include simple method interfaces, method signatures, invariants, preconditions, postconditions,

and other speci�cation devices. Unlike similar module-based constructs, classes allow the reuse of

the same speci�cation for an arbitrary number of software entities (objects).

3.2 Speci�cation Inheritance

The simplest way to reuse a speci�cation that does not quite apply to a new problem is to extend

it. Speci�cation inheritance (also known as property inheritance) supports extension by addition of

speci�cations. Subclasses may add new properties (e.g., methods, attributes) and/or add further

constraints on existing ones. However, additions may not invalidate any property listed in any

superclass. Beyond its technical uses, the emphasis on speci�cation inheritance in OO development

can lead to increased human understandability and conceptual reuse that accompanies any e�ort

to hierarchically categorize entities in a given domain.

3.3 Polymorphism

Speci�cation is an analysis and design concept. However, OO languages and tools integrate at least

some declarative and operational aspects of types and inheritance, thus linking the expression of

Lea- 3



properties and code in software. The resulting type systems enable exploitation of subclass poly-

morphism: A software client c may require that a particular server object s possess the properties

listed in some class A. However, s may well be an instance of a subclass SubA with additional

properties. Speci�cation inheritance rules, taken seriously, ensure that none of the extra properties

in SubA invalidate c's assumptions and requirements about s.

The primary e�ect on reuse is support for interoperability. Since client code is decoupled from

inessential features, new subclasses of A may be developed and plugged while at the same time

reusing existing client code. In practice, this remains more of an ideal than an everyday occurrence.

Client code is too often written in a way that needlessly depends on inessential features of a

specialized class rather than a less committal, more general superclass. (Design rules and languages

distinguishing interfaces from implementations can alleviate this but tend to leave architectural

speci�cations hidden as \implementation" matters.) Also, the introduction of a new subclass may

suggest better ways of factoring and expressing superclasses and clients.

OO frameworks (e.g., for GUIs) typically combine these forms of polymorphic client code reuse

with architectural reuse. Frameworks declare one or more inheritance hierarchies in which most

classes are listed mainly in terms of their abstract interfaces. However, the classes may also contain

code-based commitments to interconnection rules and protocols that hold independently of how

other functionality is implemented. Framework users must add subclasses that implement (and

perhaps add to) the desired functionality in an application-speci�c manner while still obeying the

connection patterns and protocols listed in superclasses.

Additional reuse opportunities stem from constructs allowing classes to be parameterized with

respect to other types. The techniques are similar to those used in modular design techniques

for languages such as Ada. However, inheritance and parameterization (genericity) are not purely

orthogonal concepts. Interactions among them lead to new design strategies, about which there is

as yet little to conclude with respect to reuse.

3.4 Defeasible Inheritance

Few languages enforce pure property inheritance rules. They instead support a form of defeasible

inheritance in which some superclass properties may be overridden in subclasses. In most languages,

this overriding is limited to rede�ning method implementations in subclasses.

Overriding can enhance reusability. Overriding rules can make it easier to obtain code decoupling.

In a system with overriding, clients cannot depend on any features of listed method code, since it

may change in subclasses. (Since in most languages, only method code, not data representation

commitments may be overridden, representational coupling remains a potential problem.) It also

provides additional opportunities for internal reuse. A superclass may include default method

implementations that are reused by most subclasses without forcing all of them to do so.

However, this form of reuse-driven inheritance can have harmful e�ects on other aspects of reuse and

software quality. Most languages do not contain powerful enough declarative constructs to require

subclass designers to preserve all essential guarantees of their superclasses. Even in languages that

do possess these features, programmers tend not to use them enough. It is often so much easier to

write code that implements functionality than declarations describing its e�ects that people don't

even attempt the latter. Thus, a subclass implementation of a method may alter semantics in a

way that does not preserve interoperability properties that clients depend on. As a limiting but

very common case, a new class may list another as a superclass solely to reuse a few bits of its

Lea- 4



implementation without in any way preserving superclass declarative properties. (Some languages

do provide constructs that distinguish at least this extreme case.)

Sometimes this form of implementation inheritance is used by developers just because it is easy to

express in OO languages. Reuse goals could be better preserved via compositional techniques such

as using another object as a delegated helper rather than listing its class as a superclass. Worse, the

fact that many programmers see these two options as nearly equivalent can lead to other conceptual

design errors. Worse still, languages, user manuals, and textbooks themselves obscure these issues

by attempting to relate subclassing concepts to the use of runtime storage layout schemes that can

be viewed as representationally \embedding" superclass objects inside subclass objects. Design

decisions are sometimes based on these considerations. Sometimes this is due to an unfortunate

but correct concern for representational compatibility with existing reused software (e.g., between

C and C++), but more often results from simple confusion about e�ciency consequences.

Defeasible inheritance is also used by programmers in order to evade language-based encapsulation

rules. In most languages, a client/host is not allowed to even reference internal implementation

matters listed in a class, but a subclass is. Thus, inheritance is used to simplify white-box reuse of

incidental implementation features. While such code mangling is not an optimal form of reuse, it

is often preferable to no reuse at all, so does have its place. It is unfortunate that OO languages

force such tradeo�s against non-local reusability goals.

To the extent to which speci�cation reuse is more important than code reuse, defeasible inheritance

appears to be a net loss. There are certainly better language constructs available that still support

decoupling, default code, and opportunistic white-box reuse, and even the convenience of expressing

speci�cations, interfaces, and code in the same framework. In fact, even without adding new

constructs, it is very possible to ban all use of defeasible inheritance in languages including C++

and Smalltalk, and still obtain these forms of reuse. However, the constructions are awkward and

unnatural enough that programmers do not employ them in practical development.

4 Biography

Doug Lea teaches computer science at the State University of New York at Oswego, teaches

software engineering courses at Syracuse University, codirects the Software Engineering Lab at

the New York State Center for Advanced Technology in Computer Applications and Software

Engineering, and works on projects involving object-oriented design, speci�cation, distribution,

compilation, reusability, and libraries.

Lea- 5


