
Customizing C++ to Improve the Reusability of Class Libraries

Taizo Kojima

Mitsubishi Electric Corporation, Central Research Laboratory

1-1, Tsukaguchi-honmachi 8-chome, Amagasaki, Hyogo, JAPAN

Tel: (06) 497-7144

Email: kojima@sys.crl.melco.co.jp

Akira Sugimoto

Mitsubishi Electric Corporation, Central Research Laboratory

1-1, Tsukaguchi-honmachi 8-chome, Amagasaki, Hyogo, JAPAN

Tel: (06) 497-7144

Email: sugimoto@sys.crl.melco.co.jp

Abstract

OPTEC is a language extension tool for customizing C++ language to improve the usability

of speci�c class libraries. Using OPTEC, a system speci�c language for non-expert programmers

can be built easily by extending C++. The system speci�c language supports selection of the

appropriate class from the class libraries, simpli�es the use of the class, and makes it easy

to de�ne a subclass from an abstract class. The system-speci�c language uses libraries as its

run-time libraries, however, this language can hide the detailed structure of the libraries from

programmers. This article describes how extension and customization of the C++ language

is e�ective for increasing the reusability of a library. It also describes an outline of OPTEC

system.

Keywords: class library, reuse, language extension, translator generator, C++

Workshop Goals: Learning; exchange views on practical experiences.

Working Groups: Reuse and OO methods, Tools and environments.

Kojima- 1



1 Background

Recently, software architectures of large-scale systems have become complicated, and the productiv-

ity of the application programmers is decreasing. Customers want systems which are as integrated,

user-friendly, reliable and scalable as they can be. As a result, large, complicated software libraries

are required to develop large-scale systems. Also, the libraries of large-scale systems are not optimal

tools for reducing programming work. Each programmer should be able to understand the frame-

work of the libraries and use them appropriately, so that many programmers can cooperatively

implement the high-level facilities of the system.

General purpose object-oriented programming languages are very e�ective for developing a system

library. Using the advanced features of the existing object-oriented languages, such as encapsu-

lation, inheritance, and polymorphism, we can create a well organized library based on classes.

However, providing only a class library is not enough to improve software productivity. To use a

class library e�ectively, such as making a subclass from an abstract class, the programmer must

have a detailed knowledge of the library source code. To develop a large-scale system requires many

programmers, and unfortunately, all programmers may not have adequate knowledge of the library.

2 Position

Although object-oriented languages provide an abstraction mechanism, enhancing the languages is

an e�ective means of simplifying application programs for a speci�c system. An example is Argus[1].

Argus language was developed by enhancing CLU[2] to design a fault-tolerant distributed system.

C++[3] has also been extended by many researchers to solve speci�c problem domains or create

new paradigms. For example, Concurrent C++[4] was developed for concurrent processing, and

RTC++[5] for real time systems.

2.1 System-Speci�c Extension of Object-Oriented Language

System-speci�c extension of language is e�ective for increasing the reusability of a library. Because

system-speci�c language uses libraries as its run-time libraries, however, this language can hide the

detailed structure of the libraries from programmers. Followings are examples of system-speci�c

extensions of language, which improve the usablity of a library.

� Simplifying the use of class

To simplify the use of a class library, it is important to minimize the necessity of knowing the

usage of the classes. This can be done by introducing new syntax for the use of speci�c classes.

� Selection of appropriate class

Selecting an appropriate class from libraries is another di�culty when a lot of classes are

provided. Therefore, it would be e�ective if a language system could support the selection.

� Context sensitive transformation

Context sensitive transformation is useful for simplifying the programs.

� Overloading the control statement

In C++, overloading is allowed only for functions and operators. However, overloading the

control statement is useful for simplifying a program[6, 7].

Kojima- 2



� Optimization using knowledge of the library

In C++, operator overloading is resolved by looking only at the arguments of one operator. As

a result, sometimes the execution e�ciency may be lost. The execution e�ciency will be improved

by using appropriate functions in regard to the pattern.

� Customization of class de�nition

In an object-oriented language such as C++, sometimes an abstract class is de�ned, to be used

for the inheritance. When de�ning a class using inheritance, programmers must have su�cient

knowledge of an inherited class. To simplify class de�nition, introducing a new construct is an

e�ective way of de�ning the subclasses of a speci�c class.

2.2 A Language Translator Generator for Extending C++

Frequently, conventional extensions for a strongly typed, object-oriented language have been done

by directly modifying the base language system. One drawback of this method, however, is that at

the start of a system-speci�c language design, the speci�cations of language are not usually clear,

and therefore, must be decided experimentally. Furthermore, in a practical language extension,

it is necessary to handle several libraries provided for supporting various aspects of a system.

Consequently, it is necessary to design a simple method of extending a language.

OPTEC is a language translator generator for extending C++. The purpose of OPTEC is to

facilitate the construction of a system-speci�c language for each system architecture and associated

class libraries. OPTEC automatically generates a language translator from a speci�cation of the

extension. To simplify speci�cation of the translation, a tree rewriting method is adopted, in which

a syntax tree for the source code is converted by transformation rules. The language translator

converts a source code, using extended C++, into a non-extended C++ code. The reason for

choosing C++ as a base language is that many programmers are familiar with C language; from

which C++ was derived.

Figure 1 illustrates the software organization of the OPTEC system. Language extension de�nitions

are described separately with 2 source �les. One is for syntax extension de�nition, and the other is

for transformation rules. A translator is constructed as follows: First, the parser generator creates

a YACC source with a syntax extension de�nition and a YACC template �le, in which C++ syntax

is de�ned. The parser generator also creates a parser for rule descriptions. Then, transformation

rules are processed with default rules, and the C++ program for the tree transformer is generated.

During this process, the template pattern and the semantic predicates of the rules are preprocessed

by the pattern compiler for making later rule selection e�cient.

3 Comparison

The C++ language provides a semantic extension mechanism called overloading, however, over-

loading of C++ is restricted to operators and functions. Therefore, an e�ective way for extending a

programming language would be to generalize the overloading. In order to generalize overloading,

a feature for handling attributes of the tree, such as adding new attributes to a tree and controlling

a scope, should be included in the extension mechanism. Although there have been many macro

expansion systems developed[8], most macro expansion methods which use syntactical pattern only,

have di�culty in handling semantics in the extensions.

In the language extension prototype system TXL by Cordy[9], variable and type declaration are

Kojima- 3



Parser
Generator

Parser Tree
Transformer

Syntax
Extension
Definition

Parser

Tree
Transformer

Transformation

Compiler
Pattern

Grammar
C++ LanguageC++ LanguageC++ Language

Program
C++ Language

Enhanced
C++ Language

Program

Rule
Description

Grammar

Default
Rules

Rules

Figure 1: Organization of OPTEC system

handled by the dynamic rule creation, that is, rules that correspond each variable name are created.

Although this method is very e�ective, a complicated rule description is needed and there are

problems in the execution e�ciency.

Cheatham et al[10] introduced data type to tree rewriting, which is derived from semantic analysis,

and used data type as one of the elements that compose the tree pattern. They used this method

to re�ne an abstract program into a concrete program[6]. Cheatham showed that the modularity

of rules are improved by specifying the transformation with data types in the examples for the

optimization of code and overloading of control statements. However, they did not consider the

extension of variable and type declarations. Their system used a semantic analizer for their base

language, and once the replacement of the tree occurs, the semantic analysis is performed for that

tree again. Therefore, when the variable or the type declaration is inserted, it is necessary to

perform the semantic analysis over the entire scope in which the declaration has e�ect.

On the other hand, the tree rewriting methods have also been studied for building a compiler code

generator[11, 12]. Aho et al[11] introduced synthesized attributes to the tree rewriting method.

The attributes represent the target machine instruction set, such as the kind of register.

The rewriting method used in OPTEC is basically an extension of Aho's method. In the compiler

code generation, variable and type declarations are processed before the code generation phase.

However, in the language extension, since the declaration will be inserted by the tree rewriting, it

is necessary to do a semantic analysis for variables and types at the rewriting phase. Therefore,

in OPTEC, features to handle synthesized and inherited attributes in the attribute grammar[13]

are introduced to the transformation rules to permit exible transformation. In the attribute

grammar, variable declaration is propagated as an inherited attribute through the tree in the scope.

In OPTEC, to perform transformation e�ciently, attributes of variables, such as data types, are

stored in a symbol table, and functions for manipulating a symbol table are provided. Furthermore,

programming using inherited attributes enables complicated transformation, which is di�cult in

conventional tree rewriting methods.

Kojima- 4



References

[1] B. Liskov, \The Argus Language and System," in Distributed Systems, Lecture Notes No.190,

Springer Verlag, 1984.

[2] B. Liskov, A. Snyder, R. Atkinson, and C. Scha�ert, \Abstraction Mechanisms in CLU,"

Comunications of ACM, vol. 20, no. 8, pp. 564{576, 1977.

[3] M. Elis and B. Stroustrup, The Annotated C++ Reference Manual. Addison Wesley, 1990.

[4] N. Gehani and W. Roome, The Concurrent C Programming Language. Silicon Press, 1989.

[5] Y. Ishikawa, H. Tokuda, and C. Mercer, \Real-Time Object-Oriented Language Design: Con-

structors for Timing Constraints," Tech. Rep. CMU-CS-90-111, CMU, 1990.

[6] T. Cheatham, \Reusability Through Program Transformations," IEEE Trans. Software Engi-

neering, vol. SE-10, no. 5, pp. 589{594, 1984.

[7] J. Katzenelson, \Introduction to Enhanced C(EC)," Softw. Pract. Exper., vol. 13, no. 7,

pp. 551{576, 1983.

[8] P. Layzell, \The history of macro processors in programming language extensibility," Computer

Jornal, vol. 28, no. 1, pp. 29{33, 1985.

[9] J. Cordy and E. Promislow, \Speci�cation and Automatic Prototype Implementation of Poly-

morphic Objects in TURING Using the TXL Dialect Processor," in Proceedings of IEEE 1990

ICCL, pp. 280{285, 1990.

[10] T. Cheatham, G. Holloway, and J. Townley, \Program Re�nement By Transformation," in

Proceedings of 5th IEEE International Conference on SoftwareEngineering, pp. 430{437, 1981.

[11] A. Aho and M. Ganapathi, \E�cient Tree Pattern Matching an Aid to Code Generation," in

Proceedings of 12th ACM POPL, pp. 334{340, 1984.

[12] A. Aho, R. Sethi, and J. Ullman, Compilers, Principles, Techniques, and Tools. Addison

Wesley, 1986.

[13] T. Reps, Generating Language-Based Environments. The MIT Press, 1984.

Biography

Taizo Kojima has been a researcher at Mitsubishi Electric Corporation's Central Research Labora-

tory since 1982. His current intrests include object-oriented systems, distributed systems, database

systems, and application-oriented programming environment He developed several application sys-

tems for practical use. Kojima received a BME from University of Tokyo in 1982.

Akira Sugimoto has been a researcher Mitsubishi Electric Corporation's Central Research Labo-

ratory since 1979. He leads research on object-oriented software engineering, visual programming,

and user interface systems. He received a BS and a MS degrees from Kyoto university in 1977 and

1979, and Dr degree from University of Tokyo in 1989.

Kojima- 5


