
Software Quality Is Inversely Proportional to Potential Local

Veri�cation E�ort

�

John E. Hopkins

Murali Sitaraman

Department of Statistics and Computer Science

West Virginia University

P. O. Box 6330

Morgantown, WV 26506-6330

Tel: (304)-293-3607, fax: (304)-293-2272

Email: jhopkins@cs.wvu.edu, murali@cs.wvu.edu

Abstract

Quality and methods for measuring quality are important for all software, especially for

those that are meant to be reused. Two factors constitute the quality of a software product: (1)

Whether the product correctly meets its speci�cation and (2) whether the product is \well engi-

neered." Intuitively, a well-engineered component is one that is easy to comprehend, maintain,

or modify.

Software engineering literature [Pressman 92, Sommerville 89] is replete with factors and

metrics for determining how well a software product has been engineered. Unfortunately, it is

not at all clear how even a smart software designer can use these factors to produce a well-

engineered software product. Most published factors and metrics are good only to the extent

that they can be used to argue \statistically" that one product is better than another.

In this paper, we propose a single factor for evaluating the goodness of the engineering of

a software product - the Potential Ver�cation E�ort (PVE) involved in locally establishing the

correctness of the product. It is possible to design software to minimize the PVE. In addition,

reduced PVE directly increases most conventionally-used software engineering metrics. PVE

is not a�ected by whether a software product is correct or whether it is possible to establish

correctness.

Keywords: Reuse, software engineering, metrics, local veri�ability

Workshop Goals: Interact; advance theory and practices of software reuse

Working Groups: certi�cation, design for reuse, metrics, and reuse education.

�

This research is funded in part by NASA Grant 7629/229/0824 and NSF Grant CCR-9204461; it has also

bene�tted from ARPA Grant DAAL03-92-G-0412.

Hopkins- 1



1 Background

Over the past several years, we have been investigating various aspects of software reuse including

speci�cation of abstract functionality and performance, formal veri�cation and testing, language de-

sign, portability, distributed and real-time computing, and education. We have regularly presented

papers and participated in reuse conferences and workshops, including the Annual Workshops on

Software Reuse. Our research in software engineering issues at the West Virginia University is

currently funded in part by ARPA Grant DAAL03-92-G-0412, NASA Grant 7629/229/0824, and

NSF Grant CCR-9204461.

2 Position

� Software quality is inversely proportional to potential veri�cation e�ort (PVE) for establishing

local correctness.

Sub-positions

1. It is possible to design to minimize the PVE.

2. Lower PVE improves conventional software engineering metrics.

3. Metrics for accurately measuring PVE are likely to be di�erent from conventional SE metrics.

3 Justi�cation for the position

The quality of a software product can be expressed as an ordered pair:

1. The \goodness" of the results

2. The \goodness" of the product.

The �rst part is easy to understand and evaluate. A software product that generates speci�ed

results is correct. To determine whether a software product is correct, it can be formally veri�ed

or can be tested.

The second part, however, is not as easy to quantify. Software engineering literature [Pressman,

Sommerville] is replete with factors and metrics for measuring this aspect of quality - determining

how good a software product is or how well a software product has been engineered. Most published

factors and metrics are good only to the extent that they can be used to argue \statistically" that

one product is better than another. Unfortunately, it is not at all clear how even a smart software

designer can use these factors to produce a well-engineered software product.

We take the position in this paper that the potential veri�cation e�ort (PVE) for evaluating part

1 (i.e., correctness) locally is a useful factor for evaluating part 2. We show that designing to

minimize PVE improves software quality and that minimized PVE directly implies improved ratings

on conventional software engineering metrics.

Hopkins- 2



function Max returns control

parameters

preserves x: integer

preserves y: integer

ensures "Max iff x > y"

Figure 1: Speci�cation of Max

function Max(x,y) is begin if x > y then return(x) else return(y); end Max;

function Max(x,y) is begin if x > y then return(x) else return(x); end Max;

Figure 2: Implementations of Max

3.1 Independence of correctness and PVE

First, we de�ne PVE. PVE is the maximum amount of e�ort needed to verify a product. The max-

imum amount of veri�cation e�ort will occur if a product is correct with respect to its speci�cation.

In other words, PVE is not in
uenced by an incorrect implementation. An incorrect implementa-

tion will be treated as if it were correct, thus yielding a PVE rating re
ecting the maximum e�ort

necessary for veri�cation.

For example, consider the speci�cation in Figure 1 and the implementations in Figure 2. The

speci�cation is in RESOLVE [Sitaraman 93]. Implementation 1 is correct; implementation 2 is not.

With all other things for both implementations being equal, the PVE rating for both procedures is

the same. Implementation 1, of course, is of higher quality because it is correct. Thus, it is entirely

possible that a well-engineered incorrect implementation may have a lower PVE than a correct,

but poorly-engineered implementation.

3.2 Example: Lower PVE implies formally-speci�ed, modular design

In this section, we discuss one example that demonstrates the utility of the PVE rating. We use 3C

terms in this discussion, where a concept means a speci�cation, content means an implementation,

and the context is the local environment in which a concept or content is explained [Latour 90,

Sitaraman 92, Tracz 90]. Given a concept and a context, consider the following four possible

contents:

1. Monolithic (no components and no layering)

2. Layered based on 1C (content-only) components

3. Layered based on 2C (content-with-concept-only) components

4. Layered based on 3C components

Let us assume that all four contents are equal on the dimension of correctness. However, it is clear

that content 1 is poorly engineered compared to content 2 (assuming that the chosen components

and the layering used in content 2 are appropriate). Content 2 which uses a modular design without

any speci�cation is worse than content 3. \Local certi�ability" [Weide 92] and hence \reusability"

makes content 4 superior to content 3. We will return to this topic later.

Hopkins- 3



PVE for monolithic content

Veri�cation e�ort in this case is a function of both the number of statements and the kind of

statements. Clearly an implementation involving several loops will require more e�ort to verify

than the one that uses only if-then-else statements which is probably more di�cult to verify than

one that uses no control statements. PVE for two loops need not be the same either because a

complex loop involving a more complex loop invariant is harder to verify than one that is less

complex. In general, PVE is based on the semantics of the statements used in an implementation

and the implementation. Gotos and uncontrolled use of pointers obviously increase the PVE.

PVE is also dependent on the speci�cation for which the content is written. Here, we're only

comparing contents for the same speci�cation and therefore, we can say that PVE = f(Content 1).

Alternatively, PVE can also be expressed as the e�ort to \reverse engineer" content 1 into the form

of Content 4 (re-1-4) plus the PVE for Content 4.

The e�ective PVE for monolithic content 1: min (PVE(Content 1), re-1-4 + PVE(Content 4)).

PVE for content layered on 1C-components

When the sub-contents used in a content are not speci�ed, then veri�cation e�ort is not far less

than what is required in the monolithic case. Veri�cation here involves inline code expansion.

This requires calls to subprograms, procedures, etc. to be replaced with the actual content (with

proper substitutions for the calling context) during the veri�cation process. This means we must

verify approximately the same code we did for the monolithic implementation. In some sense, if

understanding the bigger content involves direct understanding of each of its constituents then

modularization is of relatively little use.

The e�ective PVE for content 2: min (PVE(inline expanded Content 2), re-2-4 + PVE(Content

4)).

It seems likely that re-2-4 will be smaller than re-1-4 because reverse engineering smaller modules

may be inherently easier.

PVE for content layered on 2C-components

In this case, we assume that the sub-contents have formally-speci�ed concepts. The concept,

however, contains only calling information (such as the pre-conditions for procedures) etc., but

does not include module-level context. In this case, speci�cation-based proof rules can be used for

operation calls instead of the ones requiring inline code expansion; The sub-contents themselves

need to veri�ed locally and independently to meet their speci�cations. This may not be possible if

the context does not contain su�cient information.

The e�ective PVE for content 3: min (PVE(Content 3), re-3-4 + PVE(Content 4)).

PVE for content layered on 3C-components

In this case, each sub-component can be locally certi�ed to be correct [Weide 92]. Veri�cation e�ort

= PVE(Content 4) for this case is the lowest. This veri�cation e�ort will be even lower if each

sub-component is a reusable component and its veri�ability e�ort is amortized over its many uses.

(Without local certi�ability, reusability is impractical.)

The e�ective PVE for content 4 = f(Content 4, rf) where rf is the reuse factor.

Hopkins- 4



Though we have concentrated on the 3C model in this discussion, the Constraints module introduced

in [Sitaraman 92] \contents layered using 4C components," can be useful in including performance

issues in the PVE factor.

3.3 Discussion

We have demonstrated a strong connection between PVE and modular design of software in this

section. We believe similar results can be established for most other issues that are essential for a

\well-engineered" software product.

Metrics for PVE

How can the PVE be measured? Common metrics such as cyclomatic complexity and lines of

code provide some indication of the PVE within a module. Module interaction can provide a

measure of PVE across modules. However, for PVE to be an accurate predictor, metrics based on

formal assertions such as pre- and post-conditions of procedures, loop invariants, and semantics of

statements need to designed and developed.

Designing for lower PVE

It is possible to design software so that its PVE is minimized, and this is an important advantage of

the PVE factor. For example, Ada components designed following the guidelines in [Hollingsworth

92] will require lower PVE than ones that are not. Alternatively, adherence to guidelines such as

these may provide a useful PVE metric.

Finally, we emphasize again that PVE is independent of software correctness. PVE is a useful factor

irrespective of whether veri�cation is feasible. For a software engineer, it provides an objective that

can be understood through formal training and can be followed. In the end, it is the thought (that

veri�ability is important) that counts!

4 References

[Biggersta� 89] T. Biggersta� and A. J. Perlis, Software Reusability, Volumes 1 and 2, Addison-

Wesley, 1989.

[Hollingsworth 92] Hollingsworth, J., Software Component Design-for-Reuse: A Language-Independent

Discipline Applied to Ada, Ph. D. Diss. The Ohio State Univ., Columbus, Ohio, 1992.

[Latour 90] Latour, L., Wheeler, T., and Frakes, W., \Descriptive and Predictive Aspects of the

3C Model: SETA1 Working Group Summary," Third Annual Workshop: Methods and Tools for

Reuse, Syracuse, 1990.

[Pressman 92] Pressman, R. S., Software Engineering: A Practioner's Approach, McGraw-Hill,

1992.

[Sitaraman 92] Sitaraman, M., \A Unifrom Treatment of Reusability of Software Engineering As-

sets," WISR'92 Proceedings, Palo Alto, CA, October 1992.

[Sitaraman 93] Sitaraman, M., Welch, L.R., and Harms, D.E., "On Speci�cation of Reusable Soft-

ware Components," International Journal of Software Engineering and Knowledge Engineering 3,

Hopkins- 5



2, World Scienti�c, 1993.

[Sommerville 89] Sommerville, I., Software Engineering, 3rd ed., Addison-Westley, 1989.

[Tracz 90] Tracz, W., \The Three Cons of Software Reuse," Third Annual Workshop: Methods and

Tools for Reuse, Syracuse, 1990.

[Weide 92] Weide, B. W., and Hollingsworth, J., \Scalability of Reuse Technology to Large Systems

Requires Local Certi�ability," WISR'92 Proceedings, Palo Alto, CA, October 1992.

5 Biography

John Hopkins is a graduate student majoring in computer science at West Virginia University. He

holds degrees in mathematics and computer science from West Virginia Institute of Technology. As

part of the Software Reusability Group at West Virginia University, his research interests include

formal speci�cation, formal veri�cation, language design and software quality.

Sitaraman is an assistant professor in computer science at the West Virginia University. He has a

Ph.D. from The Ohio State University (1990). His research focuses on various aspects of software

reuse and software engineering, in general. He and members of his group are currently working on

speci�cation of abstract functionality and performance, formal veri�cation and testing, language

design, portability, distributed and real-time computing, and education. Sitaraman has authored

several technical papers on related topics in software engineering. He is a member of the ACM and

IEEE Computer Society.

Hopkins- 6


