
Towards tools and languages for hybrid domain-speci�c kits

Martin L. Griss

Software Reuse Department, Software Technology Laboratory

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94301

Tel: (415) 857-8715

Email: griss@hpl.hp.com

Abstract

As part of HP Laboratories research into a systematic process for domain-speci�c reuse, we

are exploring the notion of Domain-Speci�c Kits. Kits are comprised of compatible, domain-

speci�c components, frameworks and glue languages, supported by a variety of technologies and

tools, such as domain-speci�c languages, builders, generators and domain-tailored environments.

We are particularly interested in hybrid kits, which combine both generative and compositional

reuse, and domain-speci�c language tools to support the generative part. This paper describes

our initial thinking and investigations.

Keywords: Reuse, kits, builders, generators, domain-speci�c languages, hybrid reuse.

Workshop Goals: Learn more about domain analysis/engineering and generative reuse meth-

ods; share and discuss information on our research program.

Working Groups: Kits, generative reuse, domain engineering

Griss- 1



1 Background

I have been involved with HP software engineering products and processes since 1985, and with

HP reuse e�orts since 1989. In position papers at WISR'92 (Palo Alto) and IWSR'93 (Lucca),

I described our multi-disciplinary reuse research program started at HP Laboratories in 1992[1].

This program complements HP's Corporate Reuse Program, described at IWSR'91, WISR'92 and

IWSR'93. Key to our research program is an integrated approach to technology, method, process

and organization issues. Our program has two major themes: domain-speci�c-kits and exible

software factories. The domain-speci�c kit research focuses on the technologies and methods for

the production, use and support of kits, while the exible software factory work concentrates on

the processes, organization design, and software engineering and communication infrastructures for

kit-based software development.

At WISR'92, the Domain Analysis Working Group[2] explored the di�erent styles of domain anal-

ysis appropriate to either generative or compositional reuse. Purely generative approaches (e.g.

Draco[3]) were deemed too complex for most cases, even though the payo� is high. Instead, one

should try hybrid reuse, combining both generative and compositional approaches. However, cur-

rent DA methods do not facilitate systematic design for hybrid reuse, or tradeo�s as to which route

to take for which part of a complete application family.

At IWSR'93, the tutorial by Frakes, Batory and Devanbu on application generators did not re-

ally address these issues, nor how to design appropriate domain-speci�c languages for the level of

generator technology chosen. Instead, it focused primarily on a few commercially available imple-

mentation techniques and tools. There were some useful experience reports, but no guidelines for

hybrid reuse tradeo�s[4, 5].

2 Position

It is my belief that there are several important issues involved here, and that they should be

addressed systematically. We need:

� methods and supporting technology to design and implement hybrid kits

� guidelines and examples of a variety of simple and more complex ways of using domain-speci�c

languages and generators within hybrid kits

� techniques and mechanisms to ensure openness and extensibility of the kit, and to smooth

the boundary between generative and compositional parts

� methods and common mechanisms to produce frameworks which will ensure that indepen-

dently developed can interoperate.

This position paper will summarize some of our work on kits, hybrid reuse, domain-speci�c lan-

guages and related issues.

Griss- 2



3 Domain-Speci�c Kits

Our goal is to develop for HP divisions the methods and technologies to dramatically improve

application construction tasks using reuse. Most HP reuse situations involve the construction of

families of closely related applications. To encourage the coherent design, implementation and

packaging of a variety of comaptible domain-speci�c workproducts, we �rst identify and structure

the domain (\domain engineering") and then use new methods (\kit engineering") to build a

\domain-speci�c kit" consisting of domain-speci�c components, supporting infrastructure and tools.

The kit is then used to build one or more applications.

A typical \hybrid domain-speci�c kit" will contain (most of):

� A set of components, which are well documented, tested and packaged sets of compatible

software workproducts: C functions, C++ objects, generator templates, test-�les, software-

bus connected mega-components, etc.

� A framework within which compatible components can be combined with hand-written or

generated glue-language, and the addition of non-kit workproducts. The framework provides

common services, key mechanisms and core functionality, ensures appropriate interoperability

and customizability, and establishes conventions and mechanisms to add new compoents.

� A glue language to combine components and add needed functionality. This could be general

purpose, a exible scripting language, or highly domain-speci�c.

� Exemplary generic applications are pre-packaged, ready-to-run, standard applications built

with the kit, with interconnected framework, components and glue. A complete applica-

tion is evolved or customized using built-in customization methods and adding or replacing

components, supporting a prototyping development cycle[6, 7].

� A construction environment provides tools such as component browser, glue language editor,

application builder and generator. Debugging, testing, and construction step recording tools

aid in quick assembly and modi�cation. Using a combination of techniques, one can start

from components, generic applications or from previously built user applications.

� An execution environment provides support for customizing and running the application, with

debugger, interpreter, graphical display and monitoring, etc.

4 Theory and Practice of Domain-Speci�c Kits

We are trying to produce a theory and practice of domain-speci�c kits, abstracting ideas from

division studies and experiences in developing and using several domain-speci�c kits. A complete

methodology should include:

� A philosophy of how and when to use domain-speci�c kits, and guidelines on how to bal-

ance the cost and bene�ts between the development of frameworks, reusable domain-speci�c

components and languages, and the use of traditional programming.

� A taxonomy or catalog of kit models, styles, and implementation techniques. For exam-

ple, kits may be \closed and complete", or \open and extensible", providing a some needed

Griss- 3



workproducts, and instructions and mechanisms to create, declare and register new compo-

nents.

� Processes and methods to be used by kit developers and users, workproduct supporters and

managers, such as \domain engineering," \kit engineering,"\framework design," \component

management," \generator design and implementation," \using a kit," \augmenting a kit,"

etc.

� A set of (customizable) tools and core technology that can be used to de�ne and develop kits,

such as domain analysis tools, language and generator kits, library and browsing tools, glue

language interpreters and compilers, software-bus services, user-programming and customiz-

ing language kits, etc.

� A set of case studies which illustrate the principles, the practice and the tradeo�s. It would

be useful to know language sizes, number of components, implementation costs, productivity

and quality bene�ts, etc.

4.1 Domain-speci�c languages for hybrid kits

Language technology can be used in several ways to include domain-speci�city into a hybrid

kit for di�erent audiences and situation. There are several opportunies for domain-speci�c\little

languages"[8], such as:

� Component development and generation (from templates or rules)

� Parameter generation for parameterized components

� Glue/con�g language for component interconnection

� Data �le/table creation

� Loader/builder scripts

� Templates/declarations for registering new components in an open kit

� End-user programming/customization

The following list illustrates some implementation choices:

� Conventional language + domain-speci�c library of code

Using Basic or C, the domain-speci�city is o�ered as a library of parts.

� Object-oriented language + domain-speci�c class library

C++ and Smalltalk make it easier to create frameworks and API's that shape components

by inheritance and polymorphism.

� Extensible language or preprocessor + domain-speci�c library

Using macros or syntax extension capabilities in LISP and TCL, or using CPP, AWK or

PERL, Yacc, or STAGE[9] as preprocessor one adds concise, domain-oriented expressions to

a standard language. These simplify parameter generation, consistent use of procedures and

data, and creating data �les, symbol-tables and other workproducts.

Griss- 4



� Custom full domain-speci�c language and environment, with domain-speci�c library.

Yacc and Lex, LISP-based meta-compilers, and C-based Tree-Meta have been used in HP to

produce a variety of instrument system programming languages. These con�gure and select

parts of an instrument, create front-panel display and remote-port drivers, declare bindings

to measurement routines, establish interfaces to higher-level analysis routines, and �ll in data

tables.

Within HP, practical systems combine several of these techniques at the same time, leading to some

issues of consistency and interoperability. One way to ensure that several languages be consistent

or interoperate, is to implement them using the same language kit, which can be embedded with the

development and delivery environments. In addition to Lex and Yacc, small embedded interpreters

(Xlisp, TCL, PERL) and simple-meta compilers (Tree-Meta, Pmeta) are quite attractive for this

purpose.

5 Next Steps and Summary

We are de�ning and prototyping a series of small domain-speci�c kits to help drive the development

of our kit design and implementation methodology and tools.

Our �rst kit is in the domain of task/dolist managers, using our software bus[10] for component

integration. Following a minimal domain analysis and kit design, components were written in several

languages (LISP, C++, TCL/TK) for item display, de�nition, time management, and dolist item

storage managment. Alternative components and options are selected, and data-structures are

de�ned, using a simple (LISP-based) con�guration language, from which a complete application is

generated. A conversational rule-based tool uses data derived from our domain analysis to present

decisions and consequences to the application builder to help generate the kit con�guration �le.

In our next cycle, we will re�ne our DA method, and be more systematic about the design of the kit

architecture and style. We will use hypertext tools (Kiosk[11]) to browse and display domain and

kit workproducts, issues and decisions and as an interface to the kit components and documents.

We are surveying the use of hybrid kits in HP, looking at language and generator style and support-

ing technologies, and to better understand divisional constraints and practices. We are collecting

information on available language, builder and generator technologies, and will do some analysis

and prototyping to understand several of these.

6 Acknowledgments

I had several useful discussions with Joachim Laubsch as I prepared this position paper. Dennis

Freeze, Jon Gustafson, Joe Mohan and Kevin Wentzel gave useful comments on drafts of this

position paper.

References

[1] M. L. Griss, \A multi-disciplinary software reuse research program," in Proceedings of the 5th

Griss- 5



Annual Workshop on Software Reuse (M. Griss and L. Latour, eds.), pp. Griss{1:8, Department

of Computer Science, University of Maine, Nov. 1992.

[2] M. Griss and W. Tracz, \Workshop on software reuse," Software Engineering Notes, vol. 18,

pp. 74{85, Apr. 1993.

[3] J. M. Neighbors, \The draco approach to constructing software from reusable components,"

IEEE Transactions on Software Engineering, vol. SE-10, pp. 564{574, Sept. 1984. Presented at

the ITT Workshop on Reusability in Programming, Newport, RI, September 1983, published

by UCI as report RTP019.

[4] B. Frakes, \Application generators." Lecture note slides, June 1993. (Private communciation).

[5] D. S. Batory, \The genesis database system compiler: Large scale software reuse from domain

modeling," in Proceedings of the 4th Annual Workshop on Software Reuse (L. Latour, ed.),

(Department of Computer Science, 222 Neville Hall, Orono, Maine 04469), pp. 1{6, University

of Maine, University of Maine, Nov. 1991.

[6] G. Fischer, \Cognitive view of reuse and redesign," IEEE Software, vol. 4, pp. 60{72, July

1987.

[7] J. A. Johnson, B. A. Nardi, C. L. Zarmer, and J. R. Miller, \Ace: Building interactive graphical

applications," Communications of the ACM, vol. 36, pp. 40{55, Apr. 1993.

[8] J. Bentley, \Little languages," Communications of the ACM, vol. 29, pp. 711{721, Aug. 1986.

[9] J. C. Cleaveland, \Building application generators," IEEE Software, vol. 4, pp. 25{33, July

1988.

[10] B. W. Beach, M. L. Griss, and K. D. Wentzel, \Bus-based kits for reusable software," in

Proceedings of ISS'92, UCI, Irvine, March 6, pp. 19{28, Mar. 1992.

[11] M. Creech, D. Freeze, and M. L. Griss, \Using hypertext in selecting reusable software com-

ponents," in Proceedings of Hypertext'91, (Palo Alto, CA), pp. 25{38, Software and Systems

Laboratory, Dec. 1991.

7 Biography

Martin L. Griss is Principal Laboratory Scientist for Software Engineering at Hewlett-Packard

Laboratories, Palo Alto. As manager of the Software Reuse Department, he leads research on

software reuse, domain-speci�c kits and exible software factories. He works closely with HP

Corporate Engineering to systematically introduce software reuse into HP's software development

processes. He was previously Director of HP's Software Technology Laboratory, researching expert

systems, object-oriented databases, programming technology, human-computer interaction, and

distributed computing. Before that, he was an Associate Professor of Computer Science at the

University of Utah, working on computer algebra and portable LISP systems (PSL). He received a

Ph.D. in Physics from the University of Illinois in 1971.

Griss- 6


