
Methods and Tools for Domain Speci�c Software Architectures

Hassan Gomaa

Department of Information and Software Systems Engineering

George Mason University

Fairfax, Virginia, 22030-4444

Tel: (703) 993-1652

Email: hgomaa@isse.gmu.edu

Abstract

At George Mason University, a project is underway to support software engineering lifecycles,

methods, and environments to support software reuse at the requirements and design phases of

the software lifecycle, in addition to the coding phase. A reuse-oriented software lifecycle, the

Evolutionary Domain Lifecycle [1, 2], has been proposed, which is a highly iterative lifecycle

that takes an application domain perspective allowing the development of families of systems.

Current emphasis is on the domain analysis and speci�cation phase of the EDLC for developing

an application domain model, which captures the similarities and variations of the domain.

Keywords: domain speci�c software architectures, evolutionary domain lifecycle, system fam-

ilies.

Workshop Goals: To understand how others are approaching the domain speci�c software

architecture development problem.

Working Groups: reuse process models, domain analysis/engineering.

Gomaa- 1



1 Position

1.1 The Evolutionary Domain Life Cycle

The Evolutionary Domain Life Cycle (EDLC) Model is a software life cycle model that eliminates

the traditional distinction between software development and maintenance. Instead, systems evolve

through several iterations. Furthermore, because new software systems are often outgrowths of

existing ones, the EDLC model takes an application domain perspective allowing the development

of families of systems. The EDLC model incorporates two related sub-life cycles, domain modeling

and target system generation. Domain modeling deals with developing the reusable requirements

and domain speci�c software architecture for a family of systems, while target system generation

deals with generating target systems from the domain model.

A Domain Model is a problem-oriented architecture for the application domain that reects the

similarities and variations of the members of the domain. Given a domain model of an application

domain, an individual target system (one of the members of the family) is created by tailoring the

domain model given the requirements of the individual system.

1.2 Domain Modeling

In a domain model, an application domain is represented by means of multiple views, such that each

view presents a di�erent aspect of the domain [3]. The di�erent views are developed iteratively.

1. Aggregation Hierarchy. The Aggregation Hierarchy is used to decompose complex aggregate

object types into less complex object types eventually leading to simple object types at the

leaves of the hierarchy. Objects types are either kernel, i.e., required in every target system,

or optional, i.e., only required in some target systems. The Aggregation Hierarchy supports

the IS-PART- OF relationship.

2. Object communication diagrams. Objects in the real world are modelled as concurrent tasks,

which communicate with each other using messages. Dynamic relationships between objects,

in the form of messages passed between objects, are shown by means of object communication

diagrams.

3. State transition diagrams. Since each object is modeled as a sequential task, an object may

be de�ned by means of a state transition diagram, whose execution is by de�nition strictly

sequential.

4. Generalization / Specialization Hierarchy. As the requirements of a given object type are

changed to meet the speci�c needs of a target system, the object type may be specialized by

adding, modifying or suppressing operations. In domain modeling, the variants of a domain

object type are stored in a Generalization / Specialization Hierarchy (GSH), which supports

the IS-A relationship.

5. Feature / Object dependencies. This view relates the end-user's perspective of the domain,

namely the features supported by the domain, to the object types in the domain model. It

shows for each feature (domain requirement) the object types required to support the feature.

Also de�ned are any prerequisite features required and any mutually exclusive features. This

view is particularly important for optional features, since it is the selection of the optional

Gomaa- 2



features, and the object types required to support them, that determine the nature of the

desired target system.

1.3 Generation of Target System Speci�cation

A Target System Speci�cation is a problem-oriented architecture for an individual target system,

i.e., a member of the family of systems that constitute the domain. It is a tailored instance of

the Domain Model. Requirements are reused by selecting those features required in the target

system and then tailoring the domain model, subject to the appropriate feature object dependency

constraints, to generate the target system speci�cation.

1.4 Domain Modelling Environment

A proof-of-concept experiment has also been carried out to develop a prototype domain modeling

environment [Gomaa91b], which consists of an integrated set of software tools that support domain

modeling and target system requirements elicitation. The environment uses commercial-of-the-shelf

software as well as custom developed software. The graphical editors supported by the Software

Through Pictures CASE tool are used to represent the multiple views of the domain model, namely

the Aggregation Hierarchy, the Object Communication Diagrams, the Generalization / Specializa-

tion Hierarchies and the State Transition Diagrams. However, the multiple views are semantically

interpreted according to the domain modeling method. The information in the multiple views

is extracted, checked for consistency, and mapped to an object repository. The feature / object

dependencies are de�ned using a Feature / Object Editor.

A knowledge based tool is used to assist with target system requirements elicitation and generation

of the target system speci�cation [4]. The tool, implemented in NASA's CLIPS shell, conducts

a dialog with the human target system requirements engineer, prompting the engineer for target

system speci�c information. The output of this tool is used to adapt the domain model to generate

the multiple views of the target system speci�cation.

The prototype environment is a domain independent environment. Thus it may be used to support

the development of a domain model for any application domain that has been analyzed, and to

generate target system speci�cations from it.

1.5 Current Status

A major issue in the domain modeling approach to developing domain speci�c software architectures

concerns how e�ectively it addresses scaleup. The problem is not so much the size of the domain

(which is a "common" software engineering problem) but the degree of variability and volatility

in the domain. A relatively stable well understood application domain is likely to be the best

candidate for domain modeling. The method has been applied to a real-world problem, NASA's

Payload Operations Control Center (POCC) domain.

There is likely to be some tradeo� between scaleup and the amount of variation allowed in a

domain model. Too much variation is liable to lead to a combinatorial explosion. We are currently

exploring the concept of feature packages as an approach to scaleup, where features are grouped

and treated as one super feature. The current approach is oriented towards concurrent systems,

Gomaa- 3



including real-time and distributed systems. We are also adding an information modeling view,

to address more information intensive applications. Also under investigation are the design and

implementation phases of the EDLC [5].

1.6 Acknowledgements

The author is indebted to his research colleagues and students L. Kerschberg, R. Fairley, C. Bosch,

E. O'Hara-Schettino, V. Sugumaran, and I. Tavakoli, for their invaluable assistance throughout.

This work was sponsored in part by NASA Goddard Space Flight Center and the Virginia Center

of Innovative Technology. The Software Through Pictures CASE tool was donated to GMU by

Interactive Development Environments.

References

[1] H. Gomaa, R. Fairley, and L. Kerschberg, \Towards an evolutionary domain life cycle model,"

in OOPSLA'89, New Orleans, Oct. 1989.

[2] G. H. and L. Kerschberg, \An evolutionary domain life cycle model for domain modeling and

target system generation," in Proceedings of the Workshop on Domain Modeling for Software

Engineering, International Conference on Software Engineering, Austin, TX, May 1991.

[3] H. Gomaa, \An object-oriented domain analysis and modeling method for software reuse," in

Proceedings of the Hawaii International Conference on System Sciences, Jan. 1992.

[4] L. Gomaa H., Kerschberg and V. Sugumaran, \A knowledge-based approach for generating

target system speci�cations from a domain model," in Proceedings of the IFIP World Computer

Congress, Madrid, Spain, Sept. 1992.

[5] H. Gomaa, \A reuse-oriented approach for structuring and con�guring distributed applications,"

Software Engineering Journal, Mar. 1993.

Gomaa- 4


