
Inheritance: One Mechanism, Many Con
icting Uses

�

Stephen H. Edwards

Department of Computer and Information Science

The Ohio State University

2036 Neil Avenue Mall

Columbus, OH 43210

Tel: (614) 447{9803

Email: edwards@cis.ohio-state.edu

Abstract

Inheritance has many bene�cial uses, but merging them all into a single hierarchy can bring

out serious con
icts. The reasons there are such con
icts, and the reasons why they are com-

monly allowed in oo languages can be seen by examining the di�erent applications of inheritance,

and who makes use of them. To illustrate this point, this position paper includes a rudimentary

taxonomy of the various uses for inheritance in oo programming. The primary partition in the

taxonomy, between inheritance as used by the implementer of a class or as used by the client

of a class, helps to point out the ways various uses of inheritance can con
ict, and can hamper

e�ective programming.

Keywords: Inheritance, Object-oriented programming, reuse, speci�cation inheritance, code

inheritance.

Workshop Goals: Cross-fertilization of ideas with other researchers; building on the results

of wisr'92; keeping abreast of other ongoing reuse work; advancing the theoretical foundations

of software reuse.

Working Groups: Design guidelines for reuse, reuse and formal methods, reuse and oo meth-

ods, reuse handbook.

�

This work is supported in part by the National Science Foundation, CCR-9111892.

Edwards- 1

1 Background

For the past several years, the Reusable Software Research Group at the Ohio State University

has been exploring the technical problems of software reuse, focusing on a disciplined approach

to software engineering as a possible solution. In aiming for a discipline of software construction

that will scale up to large systems, the RSRG has centered on the concept of supporting modular

reasoning or local certi�ability at the component level [1, 2]. In short, the client of a reusable

component or subsystem should only have to consider a bounded amount of information (i.e., local,

rather than global) when reasoning about whether that component is the correct one to choose,

and whether it is being used correctly. [3] describes one way to ensure that all components have

this property, by applying a speci�c software discipline.

For most oo languages in use today, programmers are likely to take modular reasoning about

classes as a given. Unfortunately, the inheritance mechanism as it is most commonly realized

actually prevents reasoning about classes in a modular fashion, often in very subtle ways [4]. It

is possible to overcome this problem by only using inheritance in a disciplined way. This position

paper explores some of the reasons for the con
icts between inheritance and modular reasoning,

which are actually con
icts between di�erent ways that inheritance is used in programming, and

in reasoning about classes.

2 Position

Inheritance, which allows new items to be de�ned with respect to already existing items, is now

widely used in software construction. In fact, inheritance is almost universally regarded as a

cornerstone of methods termed \object-oriented" [5]. One reason for the success of inheritance

is the fact that it meshes with human cognitive abilities|new entities are de�ned by saying how

they are di�erent from existing entities, which is very similar to the way people seem to learn by

association, learn rules of generality, and learn exceptions to such rules.

In a programming context, inheritance has many bene�cial uses, but merging them all into a single

hierarchy can bring out serious con
icts. Many OO practitioners know that certain inheritance

practices are not advisable, such as hiding or removing methods in descendant classes, or arbitrarily

rede�ning method semantics, because subclasses that do not behave as expected may be produced.

What is the real reason for such con
icts, and why are they allowed in current oo programming

languages? An answer can be found by examining the di�erent applications of inheritance, and

who makes use of them.

Figure 1 depicts a taxonomy of the various uses for inheritance in object oriented programming

(oop). This taxonomy is not meant to be exhaustive, but it does illustrate several interesting divi-

sions. The primary partition in this �gure is between inheritance in the implementer's dimension

and inheritance in the user's dimension [6]. From the implementer's perspective, inheritance has

many uses in creating or de�ning new modules, classes, or objects. From the client's perspective,

inheritance has many uses in understanding, applying, and reasoning about classes.

Note that for the remainder of this discussion, I will use the term class to denote a software artifact

de�ned within an inheritance framework. Similarly, the terms child class or subclass will be used

to refer to a software artifact that inherits from some parent class or superclass. I have chosen

these terms since they are commonly used and understood, but I do not wish to imply that only

class-based inheritance systems will be considered [6].

Edwards- 2

Types of

Inheritance

How

Classes are

Created

How

Classes are

Used

Speci�-

cation

Implemen-

tation

In the

Language

By

People

Behavior Interface Execution

Type Con-

formance

Abstract

Models

Deferred

Classes

Dynamic

Binding

Is-A

(Subtype)

Specialize/

Generalize

\Like"

Figure 1: A Taxonomy of Uses for Inheritance

Edwards- 3

From the implementer's perspective, inheritance is often used as a method of programming by

di�erence. This programming style allows implementers to de�ne new classes di�erentially, simply

by capturing how they di�er from some pre-existing class. Traditionally, this capability has been

put forth as one of the key bene�ts provided by oo languages, and as one of the main sources of

reuse in oo environments.

The implementer can use inheritance to de�ne the speci�cation of a new class, the implementation

of a new class, or both. Further, when de�ning the speci�cation of a class by di�erence, the

implementer can treat the parent class in one of two separate ways:

� The speci�cation of the parent class de�nes a syntactic interface or protocol. The same inter-

face, with possible variations in behavior, will be inherited by the subclass. This technique

is often used in event-driven frameworks, where the inherited interface de�nes the call-back

points the framework will use to invoke class-speci�c behaviors, without restricting what

those class-speci�c behaviors might be. Virtual or deferred class de�nitions are one way of

providing such a syntactic interface description in C++ or Ei�el.

� The speci�cation of the parent class de�nes a behavioral interface, possibly through the use

of an abstract model of object state. This same behavioral description will be inherited by

the subclass. This is usually the stance taken when one wants to equate a subtype relationship

with the subclass relationship. This type of inheritance can be further restricted by requiring

that the subclass have the same abstract model as the superclass, rather than simply requiring

that the behavior be the same.

From the client's perspective, inheritance is not used to de�ne new classes, it is used to understand

and apply existing classes. Inheritance can be used within the language de�nition to determine

how classes can be used in language constructs. In this vein, inheritance is most often used for

two purposes. First, it is used in the execution model for many oo languages to describe the

notion of dynamic binding, and how that determines what code operations are executed. Second,

inheritance is very commonly used to determine type conformance for parameters to operations.

Most languages that use this approach choose to interpret inheritance relations as \is-a" or subtype

relations. A class B is a subtype of another class A (B is-a A) if any instance of B can be used

wherever instances of A are required [6]. The combination of subtyping and dynamic binding is

often the key to providing polymorphism in oo languages.

In addition to de�ning the way classes are used within language constructs, inheritance can also

be used to enhance the way people reason about and use classes. In [6], three distinct forms of

inheritance that are useful for clients are described: is-a relationships, specialization (or generaliza-

tion) relationships, and \like" or similarity relationships. The is-a relation that has already been

described can clearly be used by clients to lower the cognitive load of reasoning about collections

of classes. A similar relation, that a class B is a specialization of another class A, can also be used

by clients as an aid to understanding. A class B is a specialization of A if the instances of B can

be obtained from those of A through some form of restriction. [6] gives the following examples of

specialization:

: : :Strings can be viewed as specializations of arrays in which the elements must be

characters, arrays can be viewed as specialization[s] of dictionaries in which the keys

(subscripts) must be positive integers. [6, p. 219]

Finally, the \like" relationship implies that two classes are the same except for some clearly de-

lineated di�erences. A set is like a bag, but it does not permit duplicates to be inserted. This

Edwards- 4

relation can be used to structure a collection of classes into a hierarchy that promotes understand-

ing and careful \chunking" of di�erences (as opposed to a hierarchy set up for strict subtyping, or

for de�ning speci�cations by di�erence).

Note that in typical practice (e.g., C++, Ei�el), an oo language only only supports a single

inheritance hierarchy and all of these alternatives are blended together in this single language

mechanism. Programmers working in oo environments most likely focus on inheritance as a balance

between a subtype hierarchy, a code inheritance hierarchy, and a (syntactic) interface inheritance

hierarchy.

From the point of view of supporting modular reasoning about programs, the uses of inheritance

depicted in Figure 1 pose many challenges. When reasoning about the correctness of a given class

C, one must wear the hats of both implementer and client:

� To reason about the correctness of a class C (which consists of a speci�cation and imple-

mentation), one must consider the other classes (and inheritance relations) that went into

de�ning the interface and code that realize C.

� To reason about the correctness of the code realizing the class C, one must also consider the

classes that C is a client of.

Thus, all of the uses of inheritance in Figure 1 must be considered|not just those seen from the

client's perspective.

Unfortunately, formal treatments of inheritance often center around an is-a interpretation of the

inheritance hierarchy, which fails to address all of the inheritance uses discussed above. This

interpretation is also at odds with the way inheritance is used in practice. If the interpretation

were correct, and only true is-a relations were permitted in an inheritance hierarchy, modular

reasoning would then be feasible. This is the approach taken in resolve, where an implementer

may only make use of inheritance through a very tight interpretation of abstract model speci�cation

inheritance (at the lower left of Figure 1). This restriction ensures that the single inheritance

hierarchy present can only contain is-a relations.

Most often, however, this restriction is not made. A typical oo language like Smalltalk, C++, or

Ei�el contains a single inheritance mechanism which is used for many (or even all) of the purposes

described in Figure 1. This hopelessly muddles inheritance of implementation or representation

details with the more abstract inheritance relations like subtyping. As a result, modular reasoning

is not feasible, since the inheritance relationship itself does not have a stable meaning.

Further, class-based oo systems like Smalltalk, C++, and Ei�el pose speci�c problems for modular

reasoning:

In general, a class mechanism enforces the restriction that all objects of a speci�c class

have the same representation. [6, p. 214]

Neither [class-based system] separates the two notions of speci�cation and implementa-

tion completely because there is always a one-to-one correspondence between the two.

[6, p. 227]

The intertwining of speci�cation and implementation concepts within a language can hamper mod-

ular reasoning because it allows implementation details to \creep in" to speci�cations.

Edwards- 5

In C++ and Ei�el, deferred or virtual classes are used to further separate speci�cations and imple-

mentations by placing the speci�cation in a (virtual) superclass distinct from the concrete imple-

mentation (in a subclass). Disciplined use of this technique can remove the blurring of speci�cations

and implementations inherent in class-based inheritance, but does not completely address the other

problems limiting modular reasoning.

It appears that it might be possible to support modular reasoning within an inheritance framework,

but only if con
icting uses of inheritance are decoupled by placing them in distinct hierarchies, and

if the guarantees that must be made about information hiding along inheritance relations are

completely spelled out. Without this approach, it appears that the scope of uses for inheritance

must be signi�cantly limited to make modular reasoning feasible.

3 Comparison

The central theme in Section 2 is separating the mechanism of inheritance from the ends it can be

used to achieve. As in most cases where there is more than one possible goal, con
icts between

goals arise. A language designer who wishes to ensure the correctness of his typing system may

choose to restrict inheritance in certain ways [7, 4] to achieve this, which may in turn prevent

some programmers from achieving other goals (certain kinds of code inheritance). Alternatively, a

programmer may prefer to arrange his classes in a way that best exploits code sharing, which may

interfere with a user's ability to cleanly understand and reason about the class hierarchy.

In [6], many of these same con
icts are raised. In the end, LaLonde concludes that (arbitrarily

many) distinct inheritance hierarchies are needed to separate the di�erent inter-class relationships

that are being captured. However, in [6], it is the actual con
icts of di�erent inheritance practices

that drives the discussion|the goals that drive the practices emerge from the discussion of the

con
icts, rather than the other way around.

As mentioned in Section 2, attempting to apply formal methods in an oo environment forces this

problem into the open. Most often, the approach of researchers is to give a formal de�nition of

inheritance that has \good" properties, and then restrict inheritance to such uses [8, 4, 9]. In some

cases, authors have even recommended separating the inheritance hierarchy used for type checking

(i.e., the \speci�cation" inheritance hierarchy) from that used for code sharing [10]. Unfortunately,

few, if any, of these approaches is based on the goals that inheritance is used to achieve|instead,

they are often based on a single conception of a \good" inter-class relationship. Fortunately, all

of these approaches tend to choose \good" inheritance relations that ensure modular reasoning is

possible.

By focusing on \what" programmers and clients want to do with inheritance, instead of simply

the \how" of the inheritance mechanism itself, one can step back from the problem and gain a

slightly di�erent perspective. It is clear that some of the \whats" require con
icting properties

of the inheritance relationship itself. Perhaps as LaLonde and others have recommended, using

distinct hierarchies (or lattices) for separate inter-class relationships is the way to go. Of course, by

examining the support needed for each application of inheritance, one will �nd that there will be

unique restrictions and requirements for these distinct lattices. Exploring what those requirements

are, and how the lattices should be interrelated, is an area ripe for research.

Edwards- 6

References

[1] B. W. Weide, W. F. Ogden, and S. H. Zweben, \Reusable software components," in Advances

in Computers (M. C. Yovits, ed.), Academic Press, 1991.

[2] B. W. Weide and J. E. Hollingsworth, \Scalability of reuse technology to large systems requires

local certi�ability," in Proceedings of the Fifth Annual Workshop on Software Reuse, October

1992.

[3] J. Hollingsworth, Software Component Design-for-Reuse: A Language Independent Discipline

Applied to Ada. PhD thesis, Dept. of Computer and Information Science, The Ohio State

University, Columbus, OH, 1992.

[4] F. Weber, \Getting class correctness and system correctness equivalent," Tech. Rep. ProSt/91-

4, Forschungszentrum Informatik an der Universit�at Karlsruhe, 1991.

[5] R. G. Fichman and C. F. Kemerer, \Object-oriented and conventional analysis and design

methodologies," Computer, pp. 22{39, October 1992.

[6] W. R. LaLonde, \Designing families of data types using exemplars," ACM Transactions on

Programming Languages and Systems, vol. 11, pp. 212{248, April 1989.

[7] B. Meyer, Object-Oriented Software Construction. New York, NY: Prentice Hall, 1988.

[8] J. C. Royer, \A new set interpretation of the inheritance relation and its checking," OOPS

Messenger, vol. 3, pp. 22{40, July 1992.

[9] F. Weber, \Towards a discipline of class composition," Tech. Rep. ProSt/92-3, Forschungszen-

trum Informatik an der Universit�at Karlsruhe, 1992.

[10] P. S. Canning, W. R. Cook, W. L. Hill, and W. G. Oltho�, \Interfaces for strongly-typed

object-oriented programming," in OOPSLA'89 Proceedings, ACM, October 1989.

[11] O. L. Madsen, B. Magnusson, and B. M�ller-Pedersen, \Strong typing of object-oriented lan-

guages revisited," in OOPSLA ECOOP '90 Proceedings, ACM, October 1990.

Biography

Stephen H. Edwards is a doctoral student in the Department of Computer and Information

Science at the Ohio State University. His research interests are in software engineering, the use of

formal methods in programming languages, and information retrieval technology. The current focus

of his work is on developing and re�ning a formal model of software components which explicitly

addresses reuse concerns. Prior to entering the Ohio State University, Mr. Edwards was a research

sta� member at the Institute for Defense Analyses, where he worked on software reuse activities,

simulation frameworks, active databases, and Ada programming issues. Mr. Edwards received his

MS in computer science from Ohio State in 1992, and his BS in electrical engineering from Caltech

in 1988.

Edwards- 7

