
Insight in the Reuse Process?

Liesbeth Dusink

TU Delft

Tel: +31-15-783832

Email: betje@twi.tudelft.nl

Abstract

In this paper I take the position that at this moment we do not have insight in the software

engineering process and as reuse is a software engineering process directed towards using existing

(partial) solutions, we do not have insight in the reuse process either. We just do things without

being able to explain why things work, should work, go wrong, etc. The only explanations given

are based on common sense which is not enough from the scienti�c point of view.

Keywords: science, methods, techniques, process

Workshop Goals: Learning; networking; advance state of theory of reusable position papers.

Working Groups: reuse process models, reuse maturity models, reuse education, reuse and

OO, reuse and formal methods

Dusink- 1



1 Background (reused)

In 1986 an Ada program library had to be build for the Delft Ada subset Compiler. During this

work we were thinking about facilities to o�er to the users. The step to reuse was made. Because

of the Ada background we concentrated on components-based reuse on code level.

As reuse has two sides | the form of the reusable components in
uences how one can reuse and

the process of reuse in
uences in which form one wants the components { a two-track research

program was started in which the ideal form of components and the ideal process had to be found

and adapted to each other.

2 Position

Since my �rst experience with software engineering and ever after I have wondered why all methods

only state the products which have to be delivered. The syntax is described, the semantics get less

attention, and how the products have to be made, how to transform a requirements document to

a structure chart for example, is totally neglected.

When I started to develop my own software engineering method which supports the reuse of existing

artifacts and knowledge, I got a further shock. The existing methods were based on experience

only. No sound theories backed them, no explanations were given why it should be done in the way

described or why it should work. No sound statistical comparisons were made.

Software engineering research is not yet research in the scienti�c sense. Software engineering meth-

ods are developed and tools are build based on reasonable sounding arguments only. Afterwards

it is claimed \it works because of the higher productivity", but we all know the Hawthorne e�ect.

A change can have a positive e�ect independent of the kind of change. Changing back to the old

procedure has again a positive result. Therefore it is impossible to use this kind of information to

build a unifying theory on software engineering. See [1, 2, 3, 4] for a discussion about this topic.

Another reason is that if one tries a statistical sound way of measuring the e�ect, there is the

problem of the metrics. As Fenton [5] shows, we do not know what to measure, eg. should we

measure lines of code in a month for productivity or should we measure centimeters documentation.

We also do not know what we measure. What does it say when we write so many lines of code?

As I got the feeling that software engineering is problem solving by humans for humans, and that

reuse is problem solving with existing (partial) solutions, I went to cognitive psychology to see

whether theories existed on how people solve and should solve problems to base my own method

on.

It appeared that several kinds of problems existed, i.e. formal problems and non-formal problems

[6], and that software engineering could be classi�ed as solving formal problems. For formal problem

solving several theories existed.

Software engineering can be seen as a special form of problem solving. The splitting of the software

lice cycle into several steps is the division of a problem into subproblems (a general problem solving

method). The use of program plans [7, 8, 9, 10] can be compared with the schemata [11]. Functional

�xedness in programming was proved by [12].

The human understander is best viewed as an opportunistic processor, capable of exploiting both

Dusink- 2



bottom up and top-down cues as they become available [13]. This is consistent with the memory

model of the schema theory. We see that software engineers do the same. Generally, it is found

that software engineers �rst play with the problem, give partial solutions, go into details, etc. until

they feel grip on the problem (a mental problem model is created) [14]. From then on they �rst

give a solution in general terms before they specialize [15].

All these �ndings supported the idea that conclusions from cognitive psychology can be used in

software engineering.

My work gives theories based on cognitive psychology, and from the conclusions drawn a process

is derived and necessary characteristics for describing reusable components are derived.

My work has improved the state of the art by giving a process model which is also re�ned to a

method.

My work has improved the state of the practice as HP has used ideas from it in their reuse project,

the reuse process model as discussed in former workshops has incorporated several ideas.

2.1 Reuse

Without knowledge of problem-related concepts, the memory quickly reaches its limits when trying

to understand code [16]. This is because the knowledge can not be related to existing schemata

and thus has to be stored as separate facts in the short term memory. As the short term memory

is non-associative and can contain up till 7 items, one sees the relevance of laying relations with

existing knowledge [17, 6, 16, 18].

There are di�erent approaches when trying to understand code, a systematic strategy and an ad hoc

strategy [8, 19]. In the systematic approach �rst the total documentation is studied in a systematic

manner. In the ad hoc approach documentation is read at random. The systematic approach can

take too much time for large pieces of program and the ad hoc strategy gives poorer results when

adapting a program. Therefor documentation has to be in such a way that it is easy to combine

both strategies in an intelligent manner. The documentation has also to be in such a way that the

limits of the memory are not reached very quickly.

In [20] mental laziness is remarked as one of the problems with reuse. In [21] some experiments are

done about how to prevent that the habit masters the individual instead of the individual mastering

the habit. It appears that by promoting productive thinking the problem of mental laziness could

be overcome. If a solution is actively verbalized transformation to new situations becomes easier

[11]. This improves reuse. The active participation in �nding a solution improves the recognition

of the possibility of applying the solution to other areas [11].

There are two basically di�erent approaches to understanding a program. The �rst is the systematic

strategy, where the programmer traces data 
ow and control 
ow throughout the program. The

second strategy is the as-needed strategy, where the programmer reads only those part of the

documentation or code as (s)he thinks to be of interest [19, 8].

Dusink- 3



3 Comparison with Other Work

Maiden and Sutcli�e explain �ndings from experiments with help of cognitive psychology. They

also base tools on hypothesis from cognitive psychology.

In Bill Curtis' [22] collection of articles, one �nds a lot of articles which compare methods or

techniques for parts of the life cycle. But, as one of the comments from Curtis states, these

comparisons are mostly not sound on methodological level, no experienced programmers are used

thus the conclusions can not be extrapolated to experienced programmers as it it known that

experienced programmers work di�erent than less experienced programmers.

Fisher and his group have a model on how programmers work, based on cognitive psychology, and

base a series of tools on their model.

One sees that other persons and groups concentrate on the tool side of software engineering. Where

Mayer [23] made clear that the syntactic sugar in which concepts are modeled is important for faster

and better understanding of the used concepts. And it is not yet clear what kind of syntactic sugar

is helpful and what kind is not. There are con
icting studies [24].

References

[1] G. H. Bradley, \Cognitive Science View of Software Engineering," in Gibbs and Fairley [25],

pp. 35{51.

[2] A. N. Habermann, \Report of the Software Engineering Priciples Working Group," in Gibbs

and Fairley [25], pp. 369{380.

[3] W. E. Richardson, \Why Is Software Engineering So Di�cult?," in Gibbs and Fairley [25],

pp. 98{106.

[4] R. H. Thayer and L. A. Endres, \Software Engineering Project Laboratory: The Bridge Be-

tween University and Industry," in Gibbs and Fairley [25], pp. 263{291.

[5] N. E. Fenton, SOFTWAREMETRICS: A Rigorous Approach. Chapman and Hall, 1991. ISBN

0-442-31355-1.

[6] W. Wickelgren, Cognitive Psychology. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1979.

[7] R. Rist, \Planning in Programming: De�nition, Demonstration, and Development," in Soloway

and Iyengar [26], pp. 28{47. (Human/Computer Interaction Series).

[8] D. Littman, J. Pinto, S. Letovsky, and E. Soloway, \Mental Models and Software Mainte-

nance," in Soloway and Iyengar [26], pp. 80{98. (Human/Computer Interaction Series).

[9] C.-C. Yu and S. Robertson, \Plan-Based Representations of Pascal and Fortran Code," in

Soloway et al. [27], pp. 251{256. special issue of the ACM/SIGCHI Bulletin.

[10] S. Wiedenbeck, \Processes in Computer Program Comprehension," in Soloway and Iyengar

[26], pp. 48{57. (Human/Computer Interaction Series).

[11] R. Mayer, Thinking, Problem-Solving, Cognition. W.H. Freeman and Company, 1983.

Dusink- 4



[12] R. Mayer, \Di�erent Problem-Solving Competencies Established in Learning Computer Pro-

gramming With and Without Meaningful Models," Journal of Educational Psychology, no. 67,

pp. 725{734, 1975.

[13] S. Letovsky, \Cognitive Processes in Program Comprehension," in Soloway and Iyengar [26],

pp. 58{79. (Human/Computer Interaction Series).

[14] R. Guindon and B. Curtis, \Control of Cognitive Processes during Software Design: What

Tools are Needed?," in Soloway et al. [27], pp. 263{268. special issue of the ACM/SIGCHI

Bulletin.

[15] K. Duncker, \On Problem Solving," Psychological Monographs, vol. 58, p. 270, 1945.

[16] B. Shneiderman, Software Psychology: Human Factors in Computer and Information Systems.

Little, Brown Computer Systems Series, Little, Brown & Company, 1980.

[17] A. Newell and H. A. Simon, Human Problem Solving. Engle Wood Cli�s N.J.: Prentice-Hall,

1972.

[18] G. A. Miller, \The Magical Number Seven| Plus or Minus Two: Some Limits on our Capacity

for Processing Information," Psychological Review, no. 63, pp. 81{97, 1956.

[19] J. Pinto and E. Soloway, \Providing the requisite Knowledge Via Software Documentation,"

in Soloway et al. [27], pp. 257{262. special issue of the ACM/SIGCHI Bulletin.

[20] N. Maiden and A. Sutcli�e, \The Abuse of Re-use: Why Cognitive Aspects of Software Re-

usability are Important," in Software Re-use, Utrecht 1989: Proceedings of the Software Re-

use Workshop, 23-24 November 1989, Utrecht, The Netherlands (L. Dusink and P. Hall, eds.),

ch. 10, Springer-Verlag, 1991.

[21] A. Luchins and E. Luchins, \New Experimental Attempts at Preventing Mechanization in

Problem Solving," Penguin Modern Psychology, ch. 6, Penguin Books, 1968.

[22] B. Curtis, ed., Tutorial: Human Factors in Software Development (second edition). IEEE

Computer Society Press/ North-Holland, 1986.

[23] R. E. Mayer, \Comprehension as a�ected by structure of problem representation," in Curtis

[22], pp. 320{326.

[24] S. B. Sheppard, E. Kruesi, and B. Curtis, \The e�ects of symbology and spatial arrangement

on the comprehension of software speci�cations," in Curtis [22], pp. 327{334.

[25] N. E. Gibbs and R. E. Fairley, eds., Software Engineering Education: The Educational Needs

of the Software Engineering Community. New York: Springer-Verlag, 1987.

[26] E. Soloway and S. Iyengar, eds., Empirical Studies of Programmers, papers presented at the

First Workshop on Empirical Studies of Programmers, June 5-6, 1986, Washington, DC.,

Ablex, 1986. (Human/Computer Interaction Series).

[27] E. Soloway, D. Frye, and S. Sheppard, eds., CHI'88 Conference Proceedings, Human Factors

in Computing Systems, May 15-19, 1988 Washington, DC.,, ACM Press, 1988. special issue

of the ACM/SIGCHI Bulletin.

Dusink- 5



4 Biography (reused)

Liesbeth Dusink is a lecturer at Delft University of Technology, chair software engineering, since

1985. She teaches introduction in programming in Modula-2 with VDM, software engineering and

object oriented approach, and software engineering environments. Since 1992 she also works as

research engineer at Cap Gemini Innovation, Rijswijk. At Cap Gemini she designs in VDM and

VDM++ and programs in Ada. At this moment she works on a project for tracking and tracing

of trains. These two jobs together o�er a unique combination of theory and practice.

Dusink- 6


