
Design Reuse for Real-Time Systems

Pete Cornwell, Andy Wellings

Department of Computer Science,

University of York,

Heslington,

York,

YO1 5DD,

UK

Tel: (+44) 0904 432711

Fax: (+44) 0904 432767

Email: cornwell@minster.york.ac.uk

Abstract

Real-time code is often structurally dependent on underlying hardware making it a poor

candidate for reuse. High-level languages aimed at real-time systems do little to alleviate this

problem, indeed they often impose simplistic and in
exible models on development that further

prohibits portability and reuse. We believe that a component-based approach to reuse is better

achieved by working at the design level, speci�cally within an object-oriented framework. Ideally

we wish to develop a reuse approach that facilitates the speci�cation, evolution and composition

of real-time components.

Our chosen notation is HRT-HOOD, an object-oriented method for real-time system de-

sign developed at York. Through HRT-HOOD our wish is to develop a fully object-oriented

architecture-centred reuse approach, integrating design with formal techniques to model and

reuse the collaborative relationships between real-time components. Architectures provide a

reusable building plan for real-time system development to which the collaborative real-time

behaviour of components must conform in order to participate within the architecture. Adap-

tion of both architectures and components to meet changing functional and non-functional

requirements, is made possible through the use of two inheritance schemes that address the

incremental specialisation of real-time collaborative structures and individual objects.

Keywords: Reuse, Real-Time, Design, Architectures.

Workshop Goals: Discussion of our ideas; Exposure to interesting and relevant work by others;

Working Groups: Reuse and OO methods, Design Guidelines for Reuse, Reuse and Formal

Methods.
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1 Position

We believe that code is an inadequate form of representation for the reuse of high performance

real- time components. Real-time code often has strict functional and non-functional requirements

encompassing such diverse properties as concurrency, fault tolerance and distribution - which are

further bounded by hard or soft temporal constraints. A "correct" real-time implementation is

where the speci�ed functional and non-functional requirements are met with respect to the con-

straints imposed by the underlying hardware environment. In cyclic executive based systems that

still underpin the vast majority of real-time applications a successful resolution of requirements

against constraints, made possible through timing and schedulability analysis tends to result in

context-dependent code structured primarily to meet high performance criteria. As a consequence

such systems do not adequately address the needs of comprehension and maintainability resulting

in code that does not lend itself well to reuse.

High level languages[HLL's], with the abstract modelling facilities they o�er, tend to detract from

rather than enhance the reuse potential of real-time code. Abstract constructs for expressing real-

time characteristics often belie simplistic and in
exible implementation models. To work around

these limitations either compiler modi�cation or the use of supplementary low-level code is a very

real possibility; such alteration ties code closely to the underlying hardware, limiting the possibilities

for reuse. The alternative restricts code to a particular model of real-time behaviour consistent

with its underlying implementation model.

In other areas HLL real-time reuse support is correspondingly weak. The classic "plug and socket"

approach to composition, matching procedural "plugs" to "sockets" presented in the public inter-

face of an external component is totally inadequate for a real-time approach. The classic "black

box" approach to HLL component composition does not address performance issues, which remain

hidden.

2 Design Reuse

Our work attempts to address reuse at the design level by identifying those real-time characteristics

that are reusable and capturing these at an abstract level, independent of a particular implemen-

tation strategy. Object-oriented design is our favoured development paradigm. The advantages

of object- oriented components are well known, but they also present a number of key properties

useful for the modelling of real-time systems. These are:

� Concurrency : the abstract association of process and object

� Fault Tolerance : An object de�nes a useful containment boundary for error detection and

recovery.

� Timing : temporal associations can be made with be public and internal methods.

� Distribution : The granularity of an object is ideal for distribution.
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2.1 HRT-HOOD

Our favoured notation is Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD), a

variant of HOOD, developed at the University of York [1, 2]. HRT-HOOD de�nes a set of object

types, each of which model a key real-time abstraction, these are:

� Cyclic - an object with periodic activity.

� Sporadic - an object with aperiodic activity.

� Active - a non-real-time concurrent object.

� Protected - a non-concurrent object that enforces mutual exclusion on shared resources.

� Passive - a non-concurrent object.

These abstractions are supported by a rich set of synchronous and asynchronous object interac-

tion mechanisms, allowing a wide spectrum of inter-object behaviours to be modelled. In order to

maximise the reuse of detailed real-time design information, we require a scheme of design repre-

sentation that e�ectively captures key functional and non-functional real-time requirements in a

format that is implementation-independent, and su�ciently concise and abstract in order to pro-

mote rapid comprehension. To ful�l this aim we are currently evaluating a wide range of real-time

formal notations, as a basis for the capture of detailed design information with HRT-HOOD.

From this basis we are attempting to apply an object-oriented approach to reuse that encom-

passes real-time characteristics as well as purely functional. We have updated the original HOOD

object-based development scheme with an approach that is wholly object-oriented, allowing the

derivation of real-time class types from which objects may be instantiated. As HRT-HOOD is a

decompositional approach we have designed two complimentary inheritance schemes:

� Architectural Design Inheritance [ADI] - a multiple inheritance scheme designed to allow

the incremental specialisation and combination of abstract architectural class types at non-

terminal levels of a design decomposition. ADI allows the derivation of new class types that

combine the archtectures of each individual parent into a single abstraction. From this basis

new child objects may be incrementally added to the derived class type, which may draw

upon and use the services and resources inherited from the respective parent architectures.

� Detailed Design Inheritance [DDI] - This is a multiple inheritance scheme for the incremental

specialisation of detailed class types at the lowest or terminal level of a design decomposi-

tion. In contrast to ADI, DDI is a scheme closely related to inheritance mechanisms at the

implementation level. Its functional aspects allow the derivation of new class abstractions

conceptually built upon resources and methods provided by one or more parent class types.

From this inherited basis a derived class type may incrementally add new resources and

services, specialising the new abstraction to encompass extended functional requirements.

For real-time applications, the purely functional orientation of inheritance does not encompass the

specialisation and reuse of important real-time characteristics. Through ADI we have introduced a

scheme of architectural specialisation that allows the incremental addition of new real-time object

abstractions to a non-terminal class type. Extending inheritance at the most detailed level of

development to encompass issues such as concurrency, timing and fault tolerance is vital if we are
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to capitalise on the advantages for reuse o�ered by this valuable mechanism of class type extension

and specialisation. DDI will therefore be the basis for the adaption of real-time components to meet

new functional and non-functional requirements. We are currently developing a theoretical basis

for the inheritance of concurrent threads of control within the constraints of a real-time framework,

and hope to extend this to address both timing and failure issues in the near future.

2.2 Architectures

Ultimately we hope to place these ideas within an architectural reuse framework; "No object is an

island". We believe that greater reuse can be achieved by modelling the collaboration relationships

between objects as well as the component objects themselves. Complimentary to HRT-HOOD we

hope to produce a scheme that is both decompositional and amenable to the inheritance principles

outlined above. Our architectures are to be composed of slots, semantic speci�cations that de�ne

both the individual and collaborative behaviours that a reusable component must ful�ll in order

to occupy that slot. Our architectures will exhibit the following static characteristics:

� Structural - Outlining the slots of the architecture and the paths of interaction between them.

� Compositional - Allowing slots to be decomposed into child architectures, that collectively

ful�l the semantic requirements of the parent slot.

� Distributive - How the slots are partitioned onto physical processors.

Overlying the static structure are the following real-time functional and non-functional character-

istics:

� Concurrent - De�ning concurrent behaviour within and between slots.

� Fault Tolerance - De�ning a consistent failure strategy in and between slots.

� Functional - De�ning individual and collaborative functional characteristics.

� Temporal - De�ning timing requirements in and between slots.

Slots are "typed" according to their real-time characteristics and will conform to one of the HRT-

HOOD object types aforementioned. An architecture loosely conforms to a HRT-HOOD object

at a non-terminal level of decomposition, containing slots that may in turn be decomposed into

respective child architectures until the terminal level of the hierarchy is reached. Architectures at

various points on the decompositional hierarchy are ideal units of reuse and may be extracted from

their "native" environment and composed to develop new systems and subsystems. Architectures

are composed together by common components that demonstrate compliance with the syntactic

and semantic requirements of a slot in each subsystem. In other words a component may play

di�erent roles in distinct architectures, its very existence uniting them to form a coherent whole.

In the highly concurrent, asychronous systems that will come to increasingly dominate real-time

development an ideal candidate for architectural composition is the protected object, a monitor-

like construct encapsulating shared resources and the basis for communication between cyclic and

sporadic components. By capturing collaborative patterns of behaviour we ease the composition

problem. Architectures de�ne a building plan only allowing a component to participate if it ful�lls

the syntactic and semantic requirements of a particular slot. This is a signi�cant shift in emphasis

from the classic component-centred approach to reuse and ideal for the modelling of real-time

systems where the capture of high performance collaborative behaviour is vital.
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3 Comparison

1. Contracts [3] : The authors provide a textual formalism for the capture of collaborative

behaviours between inter-communicating objects called a contract. A contract is composed

of participants that de�ne the functional behaviour and type obligations that a class must

ful�l in order to be incorporated into the contract. The authors provide a formalism, called

a conformance declaration for the mapping of class inheritance trees to contract participants.

Contractsmay be built in a "bottom up" fashion through the aggregation of existing contracts,

or modi�ed through contract re�nement, a scheme that allows the incremental specialisation

of one or more contract participants. Contracts essentially de�ne architectural classes that are

instantiated by existing class components. The work of Helm, Holland and Gangopadhyay

is fundamental in the area of architectural speci�cation and reuse and contains a number

of important concepts that we would hope to build upon in our own work. The contract

notation however does not explicitly address real-time architectural speci�cation, an area

which we hope to investigate as part of future work.

2. Architectures With Pictures [4] : The authors present a common conceptual framework for the

development of real-time architectures through simple graphical notation. Architectures are

broadly classi�ed as wired , with static paths of communication between objects or wireless

where the links are both dynamic and potentially transitory. Architectures are composed of

placeholders which de�ne the semantic and syntactic properties a component must exhibit

in order to participate within a collaboration. Placeholders are dynamic in the sense that

they may be occupied by di�erent object components over time, furthermore they are subject

to hierarchical decomposition. Collaborative behaviour is de�ned by a contract [3](i), and

visualised through a simple timethread notation. Timethreads are paths of execution along

which time monotonically advances. These paths are traced through the design and represent

an order of execution, terminating when processing is complete. Buhr and Casselman consider

the development of real-time object-oriented architectures in some detail. However, their

approach does not appear to explicitly address how inheritance, the primary mechanism of

object-oriented reuse, can be integrated into a real-time architectural and component based

design framework.
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