
Practical Issues in

Building Knowledge-Based Code Synthesis Systems

Ira Baxter

Schlumberger Laboratory for Computer Science

Austin, Texas, 78720 USA

Tel: 1-512-331-3714

Fax: 1-512-331-3760

Email: baxter@austin.slcs.slb.com

Abstract

We present some issues and lessons on building a practical \generative reuse" system. We

discuss the cost of building a useful system, and the tensions between prototyping and production

systems, often induced by scale demands.

Keywords: Synthesis, transformation, generative, knowledge-based systems

Workshop Goals: Exchange ideas on capture and mechanized reuse of design knowledge.

Particular interest in learning about other work related to knowledge acquisition for program

generation.

Working Groups: reuse and formal methods, reusable component certi�cation, domain anal-

ysis/engineering

1 Author's Background

Much of the work in reuse is focused on code reuse. In contrast, much of my work is related

to reuse of design and analysis information in a formal context, in an e�ort to enhance software

maintenance.

The Draco tool [1] reused composable components resulting from domain analysis. The experience

of the Advanced Software Engineering group at UC Irvine with Draco led to ideas about porting

software by partial domain analysis, component abstraction, and re-implementation [2].

Work on Design Maintenance Systems (DMS) [3] de�ned how to generate and capture a complete

design rationale for a transformationally-derived program in terms of speci�ed performance predi-

cates. The design rationale was reused (and revised) to control the modi�cation of the synthesized

program according to formal maintenance deltas, representing desired speci�cation changes. Code

intended for reuse often needs to be modi�ed, but few concrete methods for carrying out that

modi�cation have been studied. The DMS strategies can be viewed as an explicit prescription for

how to modify code in a particular reuse instance.

Baxter- 1



My current work is on developing infrastructure needed by the Sinapse system to generate e�cient

parallel programs. This work shows the value of both declarative capture of potential parallelism in

abstract components [4], and the utility of conventional compiler optimizations such as paralleliza-

tion detection and common subexpression elimination on abstract domains rather than low-level

(i.e., Fortran) synthesized code.

2 Position

Building knowledge-based tools to aid generative reuse is a di�cult process. Both theory and

practical issues must be addressed. Many of the theoretical issues are already addressed in the

literature: domain analysis and evolution [5], transformational development [6], etc.

This position paper discusses a number of practical issues, using our experience developing Sinapse

as examples. A good software engineering process ought to identify and address these issues.

However, since building generative reuse systems is not yet a common SE task, we decided to risk

stating the obvious for would-be reusers of our experience.

2.1 Issues

We will discuss the following issues:

� Construction costs

� Scaling up for real synthesized codes

� Ad hoc knowledge vs. algorithms

� Coding vs. specifying optimization tasks

� Knowledge acquisition tools vs. knowledge capture

� Leveraging the synthesis tools

� Testing system robustness

We �rst sketch Sinapse to provide necessary background.

2.2 Sinapse Overview

The Schlumberger Laboratory for Computer Science has developed a system called Sinapse [7]

[8] [9] to synthesize mathematical modeling programs for restricted application domains. These

are primarily wave propagation problems, typically used to validate seismic or geophysical models.

Sinapse accepts a 20-50 line speci�cation which de�nes a set of partial di�erential equations (PDEs)

to be solved, either directly by stating the equations, or indirectly by use of domain-speci�c termi-

nology. Sinapse produces complete C, (sequential) Fortran, or (data parallel) Connection Machine

Fortran programs that solve the PDEs in a particular geophysical context by using �nite di�er-

encing methods, including the necessary input and output code. Resulting programs are 500-1500

lines in size.

Baxter- 2



Sinapse is a knowledge-based synthesis system, containing knowledge about the wave propaga-

tion problem domain, knowledge of abstract algorithms for solution techniques for problems in

that domain, parallelization methods for those codes, general programming knowledge, and control

knowledge to sequence the synthesis process. The domain knowledge is used to choose abstract so-

lutions by classifying domain-speci�c speci�cations. These solutions are transformationally re�ned

into a production code. The system stores synthesis sequencing knowledge as a set of hierarchical,

nonlinear plans. Abstract algorithms are stored in a mixed form consisting of abstract syntax trees

(ASTs) with procedural attachments. Decisions about branches in the design space are handled by

built-in system constraints, heuristics and defaults; because we always expect the system to have

limited knowledge, the software engineer operating Sinapse can override any heuristic decision. Re-

�nements consist of tree-to-tree rewrite rules coupled with execution of the procedural attachments.

The re�nement process is reminiscent of Draco's repeated re�ne-to-domain, optimize-within-domain

method. Optimizers based on conventional compiler technology concepts were implemented to allow

optimizations in abstract domains; this allows Sinapse to detect common subexpressions and con-

trol parallelism by analyzing the set of PDEs rather than expecting a Fortran compiler to discover

these in the �nal output.

3 Construction Costs

The development of a production-quality synthesis system, even when limited to addressing restricted

domains, and reusing existing tools, can easily consume 15-20 person-years.

Sinapse today consists of 37,000 lines of code (LOC) built on top of the commercial Mathematica

[10] system. It was developed at the cost of 12 person-years, spread over 4 elapsed years. We intend

to reach a production system that can be reliably used by physicists and engineers this year.

To provide the barest indication of where the e�ort goes, we include a system breakdown as an

LOC percentage of subsystem vs. total system:

5% Textual User Interface

9% Graphical User Interface

5% Synthesis control

25% Domain-speci�c synthesis knowledge

5% Local optimizer: type inference, simpli�cation

16% Conversion of ASTs to target languages: C, Fortran, CM Fortran, Lisp

27% Global optimizer: parallelization, code motion, CSE

4% Computation partial order management (used by optimizer)

4% Utilities/debugging tools

We caution the reader not to interpret these percentages as e�ort, because the tasks had di�ering

complexities, and considerable activity occurred outside of coding.

It should come as no surprise that much of the e�ort went into domain-speci�c knowledge acquisi-

tion. It may be more of a surprise that signi�cant e�ort went into domain-independent optimizing

technology.

Baxter- 3



4 Scaling up for Realistic Codes

One must design synthesis systems for performance with scale. We address how prototyping and

knowledge interact with scale.

4.1 Prototyping vs. Production

Well-intentioned reuse of existing tools may make scaling more di�cult.

As a system starts to show promise of utility, ambitions turn from small demos to practical codes,

and scale di�culties begin to show up. An initially attractive system foundation may have other

properties which exact a relatively large cost in comparison to the expected bene�ts. One must

consider these bene�ts carefully; engineering for scale may require paying higher costs during the

early stages of development.

As an example, we built Sinapse on top of a symbolic mathematical system, Mathematica (MMa),

because it had several attractive properties from a prototyping point of view. It provided a sin-

gle program development environment which contained considerable built-in knowledge useful for

manipulating symbolic (algebraic and di�erential) equations, a procedural programming language,

and a transformation system for free. It promised portability of the result because MMa ran on

several platforms, and it was interactive, which eased debugging by making inspection simpler.

Early versions of Sinapse bene�ted because the availability of these mechanisms made it easier to

prototype parts of the system, thereby selling the system concept via small demos.

Growing sophistication caused Sinapse's internal algorithm form to become more specialized. It

became progressively more di�cult to keep a form compatible with that of the underlying MMa

system. Eventually, we gave up direct compatibility, opting for conversion to MMa's form when we

needed MMa's mathematical knowledge, and then converting the result back to the Sinapse form.

Happily the number of conversions per run have turned out to be infrequent. Obviously, we wish to

(re)use the knowledge in a symbolic algebra system; the need for our own representations hints that

staying within the environment de�ned by such a tool is not necessarily required. Ideally, we'd like

to have a way of compiling symbolic manipulation knowledge stored in a knowledge-representation

language such as KIF [11] into a form compatible with our desired representations. This is itself a

program synthesis problem we don't know how to solve.

The MMa tree-to-tree rewrite system works well on small trees representing \typical" size math-

ematical formulas. Unfortunately, MMa's built-in control strategies work slowly on large sets of

transformations (100's of rules) on large ASTs (10K tree nodes) which are typical of the size of the

codes we synthesize. Further, MMa is an interpreter without any corresponding compiler, costing

us an additional runtime factor of 10x. Synthesis times without optimization run to 30 minutes on

a Sparc 2 and can be much longer with the optimizations. This has made building and testing the

Sinapse system components relatively painful. If one insists on using ASTs, a tree-to-tree transfor-

mation system engine is cheap to replicate compared to the investment in a synthesis system; we

would recommend instead looking into more e�cient production system tools like OPS5 [12].

Even the choice of ASTs is called into question by scale. Most \purist"" transformation systems,

MMa being no exception, operate by manipulation of ASTs. However, serious optimization of

re�ned code requires that dataow analysis be performed; ASTs are a poor choice for this. The lion's

share of the cost in the optimizer is the need to recompute the data ow analysis information after

an optimization has been made. An approach we are pursuing is the use of compiler representations

Baxter- 4



such as Static Single Assignment form [13], in which the data ow has been made explicit, and

optimizations directly transform the dataows, keeping them up to date. An ideal solution would

be to treat the data ow analysis problem as a problem in incremental re-computation, and use

�nite di�erence methods (unfortunately, this term is common to both PDE solving and program

synthesis but doesn't mean the same thing) to keep dataows current [14].

Many di�culties can be traced to the tension between prototyping and production. Synthesis

systems are controversial enough so that the need to prototype them early can predispose evolutionary

descendents to later scale troubles. For conventional SE tasks, we know that prototypes are a poor

foundation for production code; for knowledge-based systems, evidence that a prototype works

should similarly not be treated as evidence that the prototype can be easily extended to a production

code by mere incremental addition of knowledge.

4.2 Ad Hoc Knowledge vs. Algorithms

Special cases may sometimes be more easily handled algorithmically. Knowledge-based methods

should be reserved for cases where the algorithms fail because of intractability or lack of information.

System designers should be prepared to pay the price of installing the appropriate algorithms when

scaling up.

Sinapse uses some simple methods to e�ect certain kinds of optimizations. To ensure that reason-

ably high-performance code is generated, a kind of knowledge-based code motion is used to move

initialization code for re�ned components out of loops. Other special mechanisms were installed to

allow results of computations in generated programs to be stored and reused at later points. These

mechanisms have the advantage of being easy to de�ne and install, which is attractive for small

examples.

Both of these mechanisms are subsumed by conventional compiler optimization techniques that

couple code motion with common subexpression elimination. The knowledge-based versions are

somewhat fragile, and KB encoders of algorithms had to think carefully about how to use them.

The compiler methods simply work without thought; this makes the system more robust, and it

makes KB augmentation faster because less has to be explicitly encoded.

There will still be cases where compiler methods fail because the cost of inference is simply too

high. In these cases, knowledge can play a useful role.

5 Coding vs. Specifying Optimization tasks

Since many synthesis systems will have unique internal representations, there should be a way to

manufacture conventional optimizers easily.

Program speci�cation is about de�ning what a program will do. Since, given a speci�cation, one can

simply try enumerate-and-test, program synthesis is only about optimization. For scale purposes,

conventional optimizers seem necessary, but building them by hand is expensive. Much of the code

in an optimizer consists of routines that interpret how information ows across various syntactic

constructs.

While this can be encoded by hand, we found that as Sinapse's internal form evolved and grew in

complexity, the optimizer had to evolve in lock step. We often wished that we could instead specify

Baxter- 5



something like the denotational semantics [15], and \compile" that into practical optimizers. In

essence, we need an optimizer generator. Basic research is needed to accomplish this task.

Another possibility is for the synthesis community to agree on a widely usable internal form. This

would allow tools to be made generically available. We believe this avenue is unlikely because a

long search for UNCOL has largely been unsuccessful, and we expect that the utility of internal

forms will come from their domain speci�city.

6 Knowledge Acquisition Tools vs. Knowledge Capture

System designers must choose between capturing knowledge themselves and de�ning knowledge ac-

quisition tools. Experts often have little patience for unfamiliar detail. Failure to get them directly

involved in knowledge capture can limit the rate at which a system's ability grows.

Much of Sinapse's knowledge is coded in MMa notation for de�ning trees or as MMa procedures.

This required that encoders know MMa well, and made it di�cult to prevent some low-level imple-

mentation details of Sinapse from leaking into the components. Attempts to get wave propagation

experts, who were expert parallel machine programmers, directly involved in the knowledge en-

coding task were not very successful because of the high cost of learning the system. The system

designers have had to substitute for the experts when encoding the knowledge, making the designers

a bottleneck in the acquisition process.

Getting the experts involved requires that they be taught basic principles of knowledge represen-

tation and domain analysis. The system designers should spend their energy building knowledge

acquisition tools, to allowing the experts to easily �nd out what the system already knows, and

revise that knowledge, using notational schemes which are familiar [16], [17].

7 Leveraging the Synthesis Tools

We should try for an \avalanche" technology, in which the tools can be used to enhance themselves.

Much of a synthesis tool is focused around generation and optimization of mundane code. It would

be ideal if such mechanisms could be used to help generate more of the synthesizer code.

Much of the Sinapse system was built by conventional coding methods. Considerable leverage might

have been obtained if we could have used such synthesis tools to build part of Sinapse itself. As an

example, data ow analyzers on arbitrary internal forms might have been built in this fashion.

8 Testing System Robustness

A system must have a methodology for testing and con�guration management to ensure robustness.

We successfully used some conventional SE practices to help ensure the robustness of Sinapse.

Modules of the optimizer were tested dynamically on each system load during development. RCS,

a source-code control tool, was augmented with a number of procedures to ensure that the base

system had always been regression-tested, and that di�erences in test results from previous runs

Baxter- 6



had been validated by team members. These methods ensured that the developers were always

working with trusted components.

9 Conclusion

We have presented some issues that must be faced by designers of generative reuse systems. Gener-

ative systems appear to cost a lot to build; there must be considerable payo� to justify building one.

The classic tensions between the need to prototype cheaply to sell a system concept and the need

to design for scale will probably appear as repeated development. Algorithmic methods should be

used where known, and augmented with knowledge-based methods where they fail. Generation of

optimized code requires the construction of complex optimizers; abstract syntax trees seem to be

a weak representation for this purpose, and we have few tools to help us build even conventional

optimizer mechanisms.

Most of these issues are related to e�ects of scaling up, which cannot be avoided for most practical

systems.

References

[1] J. Neighbors, \The Draco Approach to Constructing Software from Reusable Components,"

IEEE Transactions on Software Engineering, vol. SE-10, Sept. 1984.

[2] G. Arango, I. Baxter, P. Freeman, and C. Pidgeon, \TMM: Software Maintenance by Trans-

formation," IEEE Software, vol. 3, pp. 27{39, May 1986.

[3] I. D. Baxter, \Design Maintenance Systems," Communications of the ACM, vol. 35, pp. 73{89,

Apr. 1992.

[4] I. D. Baxter and E. Kant, \Using Domain-Speci�c, Abstract Parallelism," in Proceedings of

Parallel-Code Generation Workshop at ICLP91, IEEE Computer Society, Oct. 1991.

[5] G. Arango, Domain Engineering for Software Reuse. PhD thesis, Department of Information

and Computer Science, University of California at Irvine, July 1988. ICS-RTP-88-27.

[6] H. A. Partsch, Speci�cation and Transformation of Programs. Springer-Verlag, 1990. ISBN

52356-1.

[7] E. Kant, F. Daube, W. MacGregor, and J. Wald, \Automated Synthesis of Finite Di�erence

Programs," in Symbolic Computations and Their Impact on Mechanics, PVP-Volume 205, New

York, NY: The American Society of Mechanical Engineers 1990, 1990. ISBN 0-791800598-0.

[8] E. Kant, F. Daube, W. MacGregor, and J. Wald, \Scienti�c Programming by Automated

Synthesis," in Automating Software Design (M. Lowry and R. McCartney, eds.), AAAI Press,

1991.

[9] E. Kant, \Synthesis of Mathematical Modeling Software," IEEE Software, vol. 10, pp. 30{41,

May 1993.

[10] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer. Reading,

Massachusetts: Addison-Wesley Publishing Company, Inc., 1988. ISBN 0-201-19334-5,

QA76.95.W651988.

Baxter- 7



[11] M. R. Geneserth and R. E. Fikes, \Knowledge Interchange Format Version 3.0 Reference

Manual," Tech. Rep. Logic Group Report Logic-92-1, Computer Science Department, Stanford

University, June 1992.

[12] L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert Systems in OPS5: An

Introduction to Rule-based Programming. Addison-Wesley, 1985. ISBN 0-201-10647-7.

[13] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, \E�ciently computing static

single assignment form and the control dependence graph," ACM Trans. Programming Lan-

guages and Systems, vol. 13, pp. 451{490, Oct. 1991.

[14] D. R. Smith, \KIDS: A Semi-Automatic Program Development System," tech. rep., Kestrel

Institute, Palo Alto, California 94304, Oct. 1989.

[15] F. G. Pagan, Formal Speci�cation of Programming Languages: A Panoramic Primer. Engle-

wood Cli�s, New Jersey 07632: Prentice-Hall, Inc., 1981. ISBN 0-13-329052-2.

[16] S. Marcus, \SALT: A Knowledge Acquistion Tool for Propose-and-Revise Systems," in Au-

tomating Knowledge Acquisition for Expert Systems (S. Marcus, ed.), pp. 81{123, Boston:

Kluwer Academic Publishers, 1988.

[17] J. Boose and B. Gaines, The Foundations of Knowledge Acquisition, Vol. 4. New York: Aca-

demic Press, 1990.

10 Biography

Ira D. Baxter is a research scientist with the Schlumberger Laboratory for Computer Science in

Austin, Texas, working on tools to help engineers generate scienti�c modeling programs for parallel

computers. He received a Ph.D. in Computer Science from the University of California at Irvine in

1990. A previous life included 20 years of system software design for mini- and micro-computers.

His interests include program synthesis/transformation, software engineering, and pizza.

Baxter- 8


