
Modeling The Dynamics of Software Reuse: An Integrating System

Dynamics Perspective

Tarek K. Abdel-Hamid

Associate Professor of Information Systems

Naval Postgraduate School

Code AS/AH

Monterey, CA 93943

Tel: (408) 656-2686

Email: 3991p@vm1.cc.nps.navy.mil

Fax: (408) 656-3407

Abstract

An integrating System Dynamics approach for modeling software reuse is proposed. The ap-

proach has three unique features. First, it integrates the multiple functions of the software reuse

process, including both the managerial activities (e.g., setting reuse production/consumption

goals, allocating resources, sta�ng, etc.) as well as the technical activities (reusable component

identi�cation, generation, consumption, etc.). Second, the model uses the feedback principles

of system dynamics as a conceptual lens to view and analyze the complex web of dynamically

interacting variables. Third, computer simulation is utilized to handle the dynamic complexity

of the model and to conduct controlled experimentation.

The model serves as a "learning laboratory" to study the software reuse phenomenon and

gain a better understanding of the interactions and trade-o�s that characterize reuse policy

decisions, as well as serve as a management support tool to evaluate/design organizational reuse

policies.

Keywords: reuse modeling, reuse management, system dynamics

Workshop Goals: Advancing state of the art in reuse dynamic modeling; Learning.

Working Groups: Reuse management, organization, and economics; reuse process models;

education.

Abdel-Hamid- 1



1 Background

My work on modeling the dynamics of software reuse is an extension of an ongoing research pro-

gram to study, gain insight into, and make predictions about the dynamics of the entire software

development process. This is being accomplished through the development of dynamic process

models using the techniques of System Dynamics. System Dynamics is the application of feedback

control systems principles to model, analyze, and understand the dynamic behavior of complex

systems. Its origins trace back to the pioneering work of Jay W. Forrester [1].

To-date, the focus of my work has been on the study of software project management [2, 3]. For

example, my colleagues and I have modelled/investigated the dynamics of software project sta�ng

[4]; cost/schedule estimation [5]; quality assurance economics [4]; and organizational learning [6].

The current research e�ort extends the application of the System Dynamics technique to model

the dynamics of software reuse. In contrast to our project management models which focus on the

individual project lifecycle, the scope here is broadened to capture the operations of a software

development organization as multiple software products are developed, placed into operation, and

maintained over a long period of time.

2 Position

Experience from working with managers in many environments indicates that they are generally

able to specify the detailed relationships and interactions among managerial policies, resources, and

performance. However, managers are usually unable to determine accurately the dynamic behavior

implied by these relationships. Human intuition, studies have shown, is ill-suited for calculating

the consequences of a large number of interactions over time, especially when cause and e�ect are

distant in time and space [7]. This can, and often does, lead to the adoption of policies that prove

dysfunctional in the long run.

Thus, one motivation for developing computer-based models of complex socio-technical systems

(such as software reuse), is to have a capability to reliably and e�ciently trace through time the

implications of a complex web of system interactions. By utilizing computer simulation techniques

we, thus, combine, the strengths of the software manager with the strengths of the computer. The

manager aids by specifying relationships within his/her software reuse environment (e.g., e�ect of

sta� experience on reuse rate), the computer then calculates the long-term dynamic consequences

of these relationships (e.g., on productivity, quality, etc.).

A second reason for constructing computer-based models, is for experimentation. Engineers turn

to laboratory experiments to learn about the behavior of complex engineering systems. Our social

systems are far more complex and harder to understand than our technological systems. Why,

then, do we not use the same approach of making computer models of social systems, such as a

software development organization, and conduct laboratory experiments on these models?

(quote) The answer is often stated that our knowledge of social systems is insu�cient

for constructing useful models. But what justi�cation can there be for the apparent

assumption that we do not know enough to construct models but believe we do know

enough to directly design new social systems? ... I am suggesting that we now do

know enough to make useful models of social systems. Conversely, we do not know

Abdel-Hamid- 2



enough to design the most e�ective social systems directly without �rst going through

a model-building experimental phase [8].

Indeed, over the last three decades the work of Forrester and others in the System Dynamics

�eld demonstrated both the feasibility and utility of constructing computer-based models to study

complex social systems. More recently, the technique has been successfully applied to the software

project domain [2]. Using these tools, the software reuse manager, like the engineer, can have a

laboratory in which he/she can simulate organizational behavior and learn quickly and at low cost

the answers that would seldom be obtainable from trials on real projects.

Characteristic features of proposed modeling approach. The proposed approach has three unique

features. First, the model integrates the multiple functions of the software reuse process, includ-

ing both the managerial functions (e.g., setting reuse production/consumption goals, allocating

resources, sta�ng, etc.) as well as the technical activities of reuse (e.g., reusable component iden-

ti�cation, generation, consumption, etc.). This contrasts with most of the research to-date on

software reuse which tended to emphasize one aspect or problem area in isolation e.g., domain

analysis, organizational rewards, identi�cation/ quali�cation of reusable components, economics,

etc. Clearly such micro-oriented research does make a useful contribution to our understanding of

the software reuse phenomenon. However, before we can say that we have a complete understand-

ing, it is necessary to show that our knowledge of the individual components can be put together

in a total system i.e., an organization can be synthesized, which allows for the interactions of all

the relevant variables and of all the structural components [9].

There is a need to learn what the relationships are between the technical and non-

technical aspects, how one inuences the other, and what makes a reuse program a

success or a failure. Reuse should be seen as a whole, as an integrated system and

therefore addressed as such. To see reuse as a separate and independent collection of

tools, techniques, or methods will only perpetuate the current status [10].

The second unique feature of the proposed modeling approach is the use of the feedback principles

of system dynamics to structure and clarify the complex set of dynamically interacting variables.

Feedback is the process in which an action taken by a person or thing will eventually a�ect that

person or thing. A feedback loop is the closed sequence of causes and e�ects, from an initial cause,

its series of ripples through an entire chain of causes and e�ects, until the initial cause eventually

becomes an indirect e�ect of itself. Circular feedback processes are universal in social systems, the

software engineering domain being no exception [2].

The third feature, is the reliance on computer simulation to handle the dynamic complexity of such

a model, and to serve as a "laboratory" for controlled experimentation.

By using a (simulation) model of a complex system, more can be learned about internal

interactions than would ever be possible through manipulation of the real system. In-

ternally, the model provides complete control of the system's organizational structure,

its policies, and its sensitivities to various events [1].

Overview of model structure and behavior. The model is quite detailed, containing more than 200

di�erence equations. Providing a full description of the model's structure is, thus, beyond the scope

of this paper. Instead, I provide an overview of the model's �ve major sectors, which are shown

Abdel-Hamid- 3



in Figure 1. At the top of the �gure is the software development and maintenance sector. The

function of this sector is to provide the overall organizational setting within which software reuse

is conducted and managed. It provides a characterization of the modeled organization's unique

software development environment (e.g., size of project portfolio, average size of projects, type of

software, maintenance backlog, etc.).

Having de�ned a particular organizational setting, we can next model the speci�c software reuse

activities of interest. These are captured in two highly interdependent sectors, a reusable compo-

nents production sector, and a reusable components consumption sector. The production sector

models the reusable components repository and the production process that populates it. Factors

a�ecting the reusable component deposition rate include the degree of functional overlap between

applications in the domain, organizational reuse support, learning, schedule pressures, perceived

costs, and organizational goals. Two things to note here. First, that most of these factors are

dynamic, that is, they can change over time. And second, the distinction between reality and the

perception of reality (e.g., as in "perceived" costs).

Similarly, the reuse consumption sector captures the reuse consumption rate and its determinants.

These include: perceived bene�ts of reuse, repository size, reuse support, learning, overlap between

applications, and schedule pressure.

The software production, maintenance, and reuse activities are all very much a�ected, and they

themselves a�ect, the size and characteristics of the organization's human resource. The human

resource sector captures the hiring and �ring of sta�, sta� resource allocation, training, turnover,

etc.

Finally, the management policy sector provides the leverage points in the model through which

management can a�ect the software reuse process. Possible managerial interventions include setting

reuse goals, allocating resources, organization, etc.

As suggested above, the software reuse process, like most organizational systems, is characterized

by a complex network of interconnected feedback loops. As an example, two simple feedback loops

are depicted in Figure 2. The lower loop is a positive self-reinforcing feedback loop. It shows

how reuse can increase an organization's software development productivity, which would increase

the organization's software delivery rate, this in turn can lead to the generation of more reusable

components, which ultimately can lead to even higher reuse rates.

This self-reinforcing loop is counterbalanced by the negative feedback loop that is also shown.

This second loop shows that a high level of reuse would decrease the amount of new/original

software components developed, which, in turn, decreases the opportunities for developing reusable

components. A reduction in the production of reusable components could then slow down or even

decrease reuse.

Which of the two loops is dominant? To answer this question, we rely on the simulation capability

of the model. A simulation run is shown in Figure 3. It shows that the two feedback loops of

Figure 2 interact in a non-linear fashion. A linear-type interaction would have led to constantly

increasing or decreasing reuse consumption and production rates (depending on which of the two

loops is more dominant). Instead, the simulation shows that initially the positive feedback loop

dominates. That is, in the early phases of a software reuse e�ort, when the reuse rate is relatively

low, the reuse process "feeds on itself" to produce a period of accelerating growth.

Eventually, however, growth slows down. In this simulation run, this happens way before the

organization reaches its theoretical reuse potential (which in this particular case is 60the balancing

Abdel-Hamid- 4



inuence of the negative feedback loop. For as the reuse rate goes higher and higher, the amount

of new/original code being developed decreases. This leads to smaller and smaller depositions to

the repository. And because older reusable components are continuously being retired from the

repository, the repository's size levels o�, and even starts decreasing slightly (as shown in the

�gure). As this happens, the reuse rate follows.

Model Utility. The model will serve as a "learning laboratory" to study the software reuse phe-

nomenon and gain a better understanding of the interactions and trade-o�s that characterize reuse

policy decisions, as well as servs as a management support tool to evaluate/design organizational

reuse policies.

3 Comparison

Most of the research to-date on software reuse has tended to emphasize one aspect or problem area

e.g., domain analysis [11], incentives [12, 13], identi�cation/quali�cation of reusable components

[14], economics [15], etc. In this research e�ort I build upon and extend what has been learned

about the "pieces" of the software reuse phenomenon to construct a holistic dynamic model of the

software reuse process that would allow us to study the complex set of interactions and trade-o�s

that characterize the process.

References

[1] J. Forrester, Industrial Dynamics. The MIT Press, Cambridge, Mass, 1961.

[2] T. Abdel-Hamid and Madnick, Software Project Dynamics: An Integrated Approach. Prentice-

Hall, Inc., Englewood Cli�s, New Jersey, 1991.

[3] T. Abdel-Hamid and S. Madnick, \Lessons learned from modeling the dynamics of software

development," Communications of the ACM, 1989.

[4] T. Abdel-Hamid, \The dynamics of software project sta�ng: A system dynamics based sim-

ulation approach.," IEEE Transactions on Software Engineering, Feb. 1989.

[5] T. Abdel-Hamid, \Adapting, correcting, and perfecting software estimates: A maintenance

metaphor," IEEE Computer, Mar. 1993.

[6] T. Abdel-Hamid and S. Madnick, \The elusive silver lining: How we fail to learn from software

development failures," Communications of the ACM, 1990.

[7] G. Richardson and G. I. Pugh, Introduction to System Dynamics Modeling with Dynamo. The

MIT Press, Cambridge, Mass., 1981.

[8] J. Forrester, \Counterintuitive behavior of social systems," Technology Review, vol. 73, Jan.

1971.

[9] M. L. Griss, \A multi-disciplinary software reuse research program," in Proceedings of the 5th

Annual Workshop on Software Reuse, Palo Alto, CA., 1992 (M. Griss and L. Latour, eds.),

pp. Griss{1:8, Department of Computer Science, University of Maine, Nov. 1992.

[10] R. Prieto-Diaz, \Making software reuse work: An implementation model," Software Engineer-

ing Notes, vol. 16, July 1991.

Abdel-Hamid- 5



[11] R. Prieto-Diaz, \Domain analysis: An introduction," Software Engineering Notes, vol. 15,

no. 2, pp. 47{54, 1990.

[12] W. Tracz, \Software reuse: Motivators and inhibitors," in COMPCON87, San Francisco, CA,

Feb. 1987.

[13] R. Holibaugh and J. Morin, \A reuse incentive model," in The 5th Annual Software Technology

Conference, HQ USAF/SC-USAF STSC, Apr. 1993.

[14] G. Caldiera and V. Basili, \Identifying and qualifying reusable software components," IEEE

Computer, Feb. 1991.

[15] J. Ga�ney and R. Cruickshank, \A general model of software reuse," in Proceedings of The

1992 International Conference on Software Engineering, Melbourne, Australia, May 1992.

4 Biography

Dr. Tarek K. Abdel-Hamid is an Associate Professor of Information Systems at the Naval Post-

graduate School. Before joining NPS, he spent two and a half years at the Stanford Research

Institute. He is an advisor to NASA's Jet Propulsion Laboratory (since 1988) on the development

of computer-based tools for software project management. He received the B.S. degree in aero-

nautical engineering from Cairo University, Cairo, Egypt, in 1972, and the Ph.D. in management

information systems from MIT in 1984. His research interests focus on software project manage-

ment, software reuse, and system dynamics. He has authored or coauthored more than 30 papers on

these topics and is the coauthor of Software Project Dynamics: An Integrated Approach (Prentice-

Hall, 1991). Dr. Abdel-Hamid is a member of the ACM, SIM, IEEE-CS, and the System Dynamics

Society.

Abdel-Hamid- 6


