
Reducing the Technical Overhead of Software Reuse

Andrew Z. Tong

Gail E. Kaiser

Columbia University

Department of Computer Science

500 W. 120th Street

New York, NY 10027

Tel: 212-939-7086, Fax: 212-666-0140

tong@cs.columbia.edu

Abstract

This paper discusses three steps (standardization, tailorability and automation) towards
reducing the technical overhead of software reuse and describes how these steps are being real-
ized in the on-going Marvel/Oz project of the Programming Systems Laboratory at Columbia
University.

Keywords: Componentization; Process Enaction; Process Modeling

Workshop Goals: To exchange information about the current state of automated support for
reuse and of reuse within environment technology

Working Groups: Reuse Process Models; Tools and Environments; Domain Analysis

Tong- 1



1 Background

In the Marvel project, we developed a multi-user process-centered environment (PCE) that can
be reused to define and execute different software development processes for different projects or
organizations [1, 2]. The process is modeled as a set of rules, each specifying the condition and
effects of one software development activity. The process is enforced and automated: by backward
chaining to attempt to satisfy the condition of an activity requested by the user and by forward
chaining to fulfill the implications of a completed activity [3, 4].

In the successor Oz project, we are developing PCE architectures and components to be reused
to produce a family of PCEs as well as members of other environment classes. We defined and
executed our own software processes using earlier versions of Marvel to construct later versions. We
are now reusing large portions of Marvel’s code in constructing Oz, as well as employing a Marvel
process that explicitly recognizes and promotes componentization and reuse.

2 Position

Assume a rather ideal situation where there are no legal issues blocking software reuse, no NIH
(“Not Invented Here”) syndrome, and reuse is encouraged through management support (e.g.,
when software reuse occurs, both the producer and reuser are rewarded). However, software reuse
may still be too costly to be practical, due to its technical overhead. This overhead includes those
additional activities required to both produce and reuse software, e.g., packaging and classifying
reusable software artifacts, searching for and selecting reuse candidates, adapting them to fit the
reusers’ specific needs, etc. The cost of each of these activities can be prohibitive and hence
invalidates the applicability of reusing software.

In the rest of this section, we discuss three incremental steps towards reducing this overhead and
briefly describe the approaches we are taking to achieve them in the on-going Oz project.

2.1 Standardization

When trying to reuse a software artifact, the reuser generally has to know:

1. Where to find what he wants.

2. Whether a given software artifact really meets his needs.

3. If so, how to use or reuse it.

4. If it cannot be used without some changes, then how to modify it.

When the software producer and reuser are speaking different “foreign languages” (e.g., using
different naming conventions or documentation styles), answering these questions may be rather
time-consuming, laborious, and error-prone – if not totally impossible. This task could be con-
siderably easier if both the producer and reuser speak the same “language”, or follow the same
standards, for example, standards to store and classify software artifacts, to specify functionality,
performance, reliability, etc., to define interfaces, and to determine the impacts of changes.

Tong- 2



Although these might be difficult to impose across organizations, such languages should be stan-
dardized as far as possible within an organization – where most reuse is likely to occur – to reduce
the overhead of learning a multitude of different “foreign languages” during software reuse.

However, from an individual software developer’s point of view, following standards may not be
directly beneficial – especially when he expects to move among different companies during his
career. Therefore, standards need to become mandatory, like law. To support organization-wide
software reuse, standards can be enforced by an organization-wide software development process.

We enforce project-wide software reuse in our Oz project by defining a reuse-oriented software
development process that is executed by the existing Marvel PCE. The process is consistently
followed by every person involved in the project development; in fact, it is not feasible to access
or modify the Oz source code except through this process (unless, of course, one has superuser
privileges). This process, called Oz/Marvel, mainly defines activities that belong to the coding
phase of the software lifecycle (e.g., how to create, change, and store various software artifacts
including source code, run-time libraries, and binaries). We are planning to expand the process
support and standardization to areas such as testing, packaging, etc. that would also be useful for
our research software.

We have substantial experience using the Marvel PCE to enforce (and automate) our actual software
development processes. For example, C/Marvel (C for the C implementation language), was used
in Marvel’s own development. Doc/Marvel (postscript document production using latex) was used
to write the over 400 pages of user and administrator manuals in the last Marvel release, and is also
used for thesis proposals, technical reports, etc. P/Marvel (P for Process) is used in developing,
testing, installing, and evolving all Marvel processes. Using P/Marvel, the distinction between
developing new Marvel processes and maintaining old ones blurs.

2.2 Tailorability

If reusers have to make a tremendous effort to tailor the selected software artifact to fit their specific
needs, they may just give up and construct their own from scratch. Tailorability or adaptability of
software artifacts requires communication between the software producer and reusers. “Commu-
nication” is harder if the pool of potential reusers is not known at the time the software artifacts
are produced, so that the producer has to anticipate all possible needs of the reusers (e.g., by
performing domain analysis).

In the domain of software process itself, there is as no consensus regarding the best process, and
in fact different processes are probably suitable for different projects and organizations.

Consequently, in order to make our Marvel PCE reusable for various process definition and execu-
tion purposes, we distinguish the mechanisms for providing services from the policies that govern
the behavior of the services. The policies can be easily tailored by what we call the process admin-

istrator. Specifically, Marvel provides:

• An object-oriented database data modeling (or schema) language, to define the software en-
gineering resources, artifacts, their composition and other relationships, and the information
to track the process state [5].

• A pair of process modeling languages, to define process steps and their prohibited, permitted
and required sequencing, including a higher-level control-oriented formalism as well as the

Tong- 3



underlying rule-based language into which it is translated [6].

• A tool-integration language, to call external off-the-shelf tools to perform the activities of
process steps [7].

• A set of lock tables, through which various types of locks and their relationships are defined,
to meet the basic concurrency control needs when multiple users participate in the same
process.

• A rudimentary coordination modeling language, to express different styles of long duration,
interactive, and cooperative transactions representing process segments.

The main theme of our new Oz project is to make the various PCE facilities themselves reusable
in designing a family of environments, so we separate the PCE architecture from its components.
One of the two major components will be a process engine called Amber, which serves as a “process
virtual machine” that executes a rule-based “process assembly language”. The other will be Pern,
which supports the definition of new concurrency control policies by restructuring (e.g., split,
join) in-progress transactions. Our objective is to define interfaces whereby Amber and Pern can
be employed as components in several styles of environment architectures, and whereby the Oz
architecture can adopt foreign process engines and transaction managers.

2.3 Automation

It is widely believed that significant improvements in software quality and productivity can be
achieved only from systematic and comprehensive software reuse – which means that nothing would
be started from scratch if there is something can be reused and reuse permeates the entire software
lifecycle. Clearly, this introduces much routine work that involves little creativity (e.g., classifying
and finding the reusable components). Thus, automation support is essential to making large-scale
software reuse practical, that is, software developers should be relieved of this technical overhead
to the degree possible in order to be able to focus on the real essence of software design and
implementation [8].

However, the applicability of automation depends on the realization of standardization and tai-
lorability. Generally, well-defined standards prove especially amenable to automation [9].

The degree and effectiveness of automation depends on how much knowledge the automation tools
have available about the tasks to be automated: the better these tools understand the tasks, the
more they can help. This matches well with the objectives of a PCE, which applies the knowledge
of the software process to automatically execute portions of it.

We are encoding incrementally into our Oz/Marvel process our increasing knowledge about reusable
architectures, components and modules such as encapsulation and functional hierarchy. Specifically,
we represent the concepts of system architecture, subsystems, components, etc., using Marvel’s
object-oriented database schema, and include in the process simple design rules that explicitly
carry out automatic reasoning based on these concepts. For example, there are rules enforcing that
within a certain system, a component at a given functional level can only invoke visible operations
of components at the next lower level, and the detailed implementation of a component is invisible
outside that component. And other rules know how to search the component repository to find the
proper components and the “glues” to integrate those components into a system.

Tong- 4



Separately from Oz, we constructed a special R/Marvel process as an extension of C/Marvel con-
cerned specifically with automating software reuse within a software process. We experimented
with modeling and automating some reuse-oriented activities, including classifying and finding the
relevant software artifacts. R/Marvel automatically indexes potentially reusable functions based
on the naming and documentation standards we followed to develop Marvel. It assists the reuser
to find the relevant items by representing queries as objects and providing rules that reason with
those objects (i.e., rules concerned with creating and modifying a query).

3 Comparison

Many groups are investigating software process modeling and enaction approaches to formally
specify, aid human understanding, and assist in the performance of software processes [10, 11].
Reuse of process knowledge is the main goal of this line of research, whereas reuse of the PCE
kernel is a direct consequence.

Several systems apply information retrieval technology to the assembly of large software libraries,
based on manually assigning attributes [12] or automatically extracting attributes from natural
language documentation. In Guru, a hierarchical clustering algorithm is added to support browsing
among query results and closely related reuse candidates [13]. When applied to AIX man pages, the
result was encouraging and outperformed the INFOEXPLORER product, in which such a library
was built manually. Such tools might be embedded in numerous processes.

Draco is an example of a reuse-oriented system that is based on a hard-wired process [14]. It applies
domain engineering, encapsulation and other reuse technologies to guide and automate software
development activities within a specific application domain.

References

[1] G. E. Kaiser, P. H. Feiler, and S. S. Popovich, “Intelligent assistance for software development
and maintenance,” IEEE Software, vol. 5, pp. 40–49, May 1988.

[2] I. Z. Ben-Shaul, G. E. Kaiser, and G. T. Heineman, “An architecture for multi-user software
development environments,” Computing Systems The Journal of the USENIX Association,
vol. 6, pp. 65–103, Spring 1993.

[3] G. T. Heineman, G. E. Kaiser, N. S. Barghouti, and I. Z. Ben-Shaul, “Rule chaining in marvel:
Dynamic binding of parameters,” IEEE Expert, vol. 7, pp. 26–32, December 1992.

[4] N. S. Barghouti, “Supporting cooperation in the marvel process-centered SDE,” in 5th ACM

SIGSOFT Symposium on Software Development Environments (H. Weber, ed.), (Tyson’s Cor-
ner VA), pp. 21–31, December 1992. Special issue of Software Engineering Notes, 17(5),
December 1992.

[5] N. S. Barghouti and G. E. Kaiser, “Modeling concurrency in rule-based development environ-
ments,” IEEE Expert, vol. 5, pp. 15–27, December 1990.

[6] G. E. Kaiser, S. S. Popovich, and I. Z. Ben-Shaul, “A bi-level language for software pro-
cess modeling,” in 15th International Conference on Software Engineering, (Baltimore MD),
pp. 132–143, IEEE Computer Society Press, May 1993.

Tong- 5



[7] M. A. Gisi and G. E. Kaiser, “Extending a tool integration language,” in 1st International

Conference on the Software Process: Manufacturing Complex Systems (M. Dowson, ed.), (Re-
dondo Beach CA), pp. 218–227, IEEE Computer Society Press, October 1991.

[8] F. P. Brooks, Jr., “No silver bullet: Essence and accidents of software engineering,” Computer,
vol. 20, pp. 10–20, April 1987.

[9] G. Caldiera and V. Basili, “Identifying and qualifying reusable software components,” Com-

puter, vol. 2, pp. 61–70, February 1991.

[10] I. Thomas, ed., 7th International Software Process Workshop: Communication and Coordina-

tion in the Software Process, (Yountville CA), IEEE Computer Society Press, October 1991.

[11] 2nd International Conference on the Software Process: Continuous Software Process Improve-

ment, (Berlin, Germany), IEEE Computer Society Press, February 1993.

[12] R. Prieto-Diaz and P. Freeman, “Classifying software for reusability,” IEEE Software, vol. 4,
pp. 6–16, January 1987.

[13] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval approach for automat-
ically constructing software libraries,” IEEE Transactions on Software Engineering, vol. 17,
pp. 800–813, August 1991.

[14] J. M. Neighbors, “The Draco approach to constructing software from reusable components,”
IEEE Transactions on Software Engineering, vol. 10, pp. 564–574, September 1984.

[15] I. Z. Ben-Shaul, “Oz: A decentralized process centered environment,” Tech. Rep. CUCS-011-
93, Columbia University, Department of Computer Science, April 1993. PhD Thesis Proposal.

[16] G. T. Heineman, “A transaction manager component for cooperative transaction models,”
Tech. Rep. CUCS-017-93, Columbia University, Department of Computer Science, April 1993.
PhD Thesis Proposal.

4 Biography

Zhongwei Tong is a PhD candidate in the Columbia University Department of Computer Science.
His research interests include software development environments, software process, and reuse. He
received his BS from Jiao Tong University, China and his MS from Columbia University.

Gail E. Kaiser is an Associate Professor of Computer Science and Director of the Programming
Systems Laboratory at Columbia University. She was selected as an NSF Presidential Young
Investigator in Software Engineering in 1988. Prof. Kaiser has published over 80 papers in a range
of areas, including software development environments, software process, cooperative transactions,
testing and debugging, reuse, application of AI to software engineering, object-oriented languages
and databases, and parallel and distributed systems. Prof. Kaiser is an associate editor of the
journal ACM Transactions on Software Engineering and Methodology, and serves on numerous
program committees for conferences as well as reviewing for conferences, journals, and the NSF.
She received her PhD and MS from CMU and her ScB from MIT. She is a member of AAAI and
ACM and a senior member of IEEE.

Tong- 6


