
Synthesizing Interface Stubs for Reusable Classes

Satish R. Thatté

Department of Mathematics and Computer Science
Clarkson University, Potsdam, NY 13699-5815

Tel: (315) 268-2395
E-mail: satish@sun.mcs.clarkson.edu

Fax: (315) 268-6670

Abstract

The problem of fitting together reusable components in spite of differences in protocol and
representation choices is well-known. I discuss a novel approach to the protocol problem based
on a formal logic of adaptability of interface types to automatically synthesize interface stubs to
achieve an exact fit between the available “socket” for a reusable part and the actual part. The
underlying notion of adaptability turns out to be related to but distinct from both subtyping
and inheritance. The important related problem of data and object mobility in the presence of
representation differences such as those between polar and cartesian representations of points
appears to be amenable to a solution based on transformational knowledge in the form of
equational laws used in conjunction with unification/matching techniques.

Keywords: class libraries, interface adaptation, object mobility, stub generation

Workshop Goals: Learning; networking; advance state of the art of class libraries and object
interoperability.

Working Groups: reuse and OO methods, reuse and formal methods, tools and environments,
reuse education.

Thatte- 1



1 Background

I have started to get involved in thinking and learning about reuse issues in the context of object-
oriented systems over the last year or so. My background is in programming languages and type
theory and I have recently been working on some type-theoretic problems that have applications
in automatic stub generation for adaptation of object interfaces including data transformations
based on knowledge expressed in the form of equational theories. I am particularly interested
in exploring the methods involved in enhancing interoperability of classes and objects at both
small and large grained levels in environments that are heterogeneous in some sense (ranging from
hardware platforms to “ontology”).

2 Position

This paper starts from the position that object technology is the most promising vehicle for realizing
the goal of large-scale software reuse. This is now a common perception that provides much of the
motivation for the current industry-wide shift towards object-oriented software design methods.
An obvious potential bottleneck in the practical realization of this vision is the weakness of current
component integration tools especially in the context of heterogeneous systems, where heterogeneity
is broadly understood to mean anything ranging from different languages/hardware platforms to
different sources for code components. This problem has been recognized and partly addressed, e.g.,
in the CORBA [1] standard for distributed components1, and in IBM’s SOM [2] library management
system for class libraries. However, neither CORBA nor SOM adequately deal with the inflexibility
of the interfaces (signatures) offered by objects to the outside world. I believe that such inflexibility
is at least a serious nuisance and could become a real problem whether the objects are connected
statically by being compiled together or are dynamically connected using, say, CORBA’s notion of
a dynamic invocation interface (DII).

Focusing on the static (class library) case first, note that in the typical lifecycle of a large component-
based system, there are likely to be many rebuilding episodes in which some of the old components
are replaced by functionally equivalent (or superior) new components. For instance, in replac-
ing an old library of container classes with a better one, or in accommodating an upgrade for a
database system which also results in a rationalization of the API. In both cases, there is likely
to be a protocol mismatch between the expected and actual interfaces for the new objects. The
application programmer is now faced with the task of somehow adapting the new objects to bridge
the difference between their expected and available interfaces—the obvious solution is to create
stubs to connect the old interfaces to the new ones2. The task is not difficult in principle; in fact
in most practical cases it is conceptually trivial. However, if a number of interdependent classes
are involved, along with the complications of genericity, inheritance and overloading, the technical
difficulty and opportunity for error are likely to be substantial. Conceptual triviality and technical
complexity is a very uninviting combination for most people, and as such the task of synthesizing
interface stubs is likely to be unwelcome and an obstacle to the optimal evolution of both class
libraries and component-based systems. At the same time, its relatively mechanical nature makes
it an inviting target for automatic inference.

1Although the main motivation for CORBA comes from distributed systems integration, CORBA-compliant ORB’s
may of course be used for integrating objects located on the same node or even in the same address space.

2Even when the functionality of a reused class needs to be extended to fulfill the requirements of the application,
the problem can often be factored into a stub generation problem and an extension problem.

Thatte- 2



The stub generation problem also occurs in both the static and dynamic invocation interfaces of an
ORB. In the context of static invocation, the interface repository is used in a way that resembles
the use of a class (or stub) library and the remarks above about class libraries apply. In using the
DII, the alternatives for an application are either to write complex code that can analyze and use
an interface found in the repository in the form of what amounts to a data-structure at run-time,
or to assume a generic interface for the required server and rely on the ORB to supply a dynamic
stub-generation service to bridge the protocol gap3, possibly with some interactive help. The latter
is obviously the more attractive option.

Conceptually there are two somewhat orthogonal issues in stub generation. One is the formalization
of “compatibility” between interface types that is a generalization of substitutability in the usual
subtyping relation, and allows functionality preserving changes in method names, parameter order,
etc. The other is both built-in and user-definable mechanisms for type isomorphism between
parameter and result types of methods that would allow data and object interchange between
client and server objects in spite of differences in representation and structure. I have made some
progress in solving both problems. The main ideas and current state of this work are summarized
below.

Formalization of Compatibility4

Compatibility is a new kind of conformance that can be formalized using an adaptability relation
between interface types, which is related to but distinct from both subtyping and subclassing. As
with the latter, the relation is quite simple except where the object (interface) types are recursive.
Recursive interfaces are commonly found in small library classes and are rare for large active
components like servers.

The main conceptual difficulty in formalizing the logic of adaptability is the misleading similarity
of the concept with both subtyping and inheritance. Clearly, if a class A can emulate B, then an
A-object can be used (with some disguise) where a B-object is needed. Treating the disguise as a
coercion, this sounds exactly like the normal notion of subtyping. However, a formal application
of this intuition leads to an impasse where obviously compatible interfaces cannot be shown to be
related. The main insight needed to distinguish subtyping from adaptability is that adaptability
is bijective whereas subtyping is injective, when both are seen as mappings realized by coercions.
In other words, the set of objects belonging to a subtype typically forms only a part of the set of
objects belonging to each of its supertypes, but if the interface of a class A is adapted to implement
the interface specification of a class B, then every B-object is emulated by a hidden A-object,
and every A-object can be converted to a B-object by attaching a suitable interface stub. These
ideas (along with certain functionality preserving protocol transformations) can be formalized in a
natural way in the form of a logic of adaptability and stub inference. The inference process can
also be automated using an algorithm that modifies and extends the (complete) subtype inference
algorithm of Amadio and Cardelli [4] for recursive types.

Some interesting issues arise in extending adaptability to generic classes. The main difficulty (as-
suming that their instantiation is user-specified) is the representation of their interface types since
the type parameters of such classes are typically constrained by implicit assumptions about their
functionality—for instance they may be used in the implementation as though they support cer-
tain operations. It has been found that representing such constraints with full generality requires

3Of course, there is theoretically the third option of hand-coding a stub interactively once the required interface
is found, but this would require all users to be system experts.

4A detailed discussion of current results is given in [3].

Thatte- 3



F-bounded polymorphism [5] which is significantly more complex than ordinary bounded polymor-
phism [6]. However, since the reusable generic class and the actual parameters it is used with often
come from different domains (the latter typically from the application domain), it is natural to use
adaptability rather than subtyping bounds for the parameters and the proof-theoretic properties
of adaptability permit the use of ordinary bounded polymorphism without loss of generality. It is
worth noting that the interface adaptation of even a single generic class can be quite complex since
the actual parameters for it often need stubs, besides the stub needed for the generic class itself.

Some important issues relating to adaptability have yet to be addressed. One is the extension to
frameworks, which can be thought of as collections of classes related by subtyping and/or inher-
itance. The existing logic ensures that the application classes can be related by any structural
subtyping relation consistent with the subtyping relations among the reusable classes used to im-
plement them. However, there are many unresolved semantic issues. The entire framework is at
present built around a simple core-OOL based on the λ-calculus extended with labeled records.
I have not yet extended the logic or algorithms to account for the idiosyncrasies of any realistic
language.

Type Isomorphism for Flexible Data Transport between Clients and Servers

This is a multifaceted problem with many existing approaches. An excellent survey of the current
state of the art is given by Wileden, et al [7]. Most current systems support what one might call
data structure isomorphism (DSI) which is used in data transport among components based on
different platforms (languages, processors, operating systems). The typical solution is to define a
universal data type definition notation (e.g., IDL [1] or XDR [8]) along with language bindings
to translate data to and from the standard format. Data transformations necessary for transport
can then be automated—typical RPC stub generation techniques already automate such transfor-
mations during transport for distributed client-server interactions [8]. The main shortcoming of
DSI is its lack of support for bridging the differences between alternative representations of ab-
stract types, such as the polar and cartesian representations of points in a plane. We need abstract
type isomorphism (ATI) to fully support data mobility in a heterogeneous environment when data
formats differ in more than platform-specific idiosyncrasies. I am interested in exploring an ap-
proach where user knowledge about the equivalence of various representations can be expressed
declaratively in the form of equational laws (seen as bijections with two-way coercions) between
representation types. The problem of establishing equivalence between representation types then
reduces to the word problem in algebraic theories for which there are well-established automated
techniques based on canonical term-rewriting. There are good research tools available to experiment
with these techniques [9, 10]. Inefficiencies due to multistage transformations can be eliminated by
using techniques such as deforestation [11] if the transformations are themselves expressed declar-
atively using a functional language. Note that such transformations are of interest whether or not
encapsulation of data-representation is important.

For a discussion of a closely related problem in the context of type reconstruction in functional
languages, and the associated equational unification theory, see [12, 13].

3 Comparison

To my knowledge there has been no previous work on automated tools for generating interface stubs
of the kind described above, but there are many frameworks and actual systems which provide a

Thatte- 4



suitable habitat for such an extension. These are of two kinds: class library management systems
and component connection and interoperability frameworks. A few of these, along with some
alternative approaches, are described below.

IBM has implemented a class library framework called SOM [2]. SOM provides language neutral
packaging and upwardly compatible binary libraries with support for dynamic linking which permits
changes without recompilation of clients and even cross-language subclassing without access to
source code. SOM also supports the use of object-oriented technology from procedural languages.
The interface stubbing techniques described above clearly complement these strengths and would
further enhance the reusability of classes in SOM libraries.

Wileden, et al [7], describe an approach to what they call specification level interoperability which
is quite similar in spirit to the notion of abstract type isomorphism discussed above. However, their
implementation appears to focus on pairs of language-specific stubs to ferry calls and results between
static client-server pairs. They do not support knowledge-based automated exploration/selection
of possible isomorphisms among representations. In fact, the prototype described in the paper does
not support object mobility at all, although they do recognize the need for it as a future extension.

CORBA [1] is perhaps now the most widely accepted framework for interoperability of distributed
components. It contains DSI support for data transport at a relatively high level of abstraction
based on a type definition facility called IDL. The basic framework contains no notion of auto-
mated support for interface adaptation or abstract type isomorphism although both could be seen
as “components” (in the CORBA terminology) that define extensions of the basic functionality.
CORBA contains an interface repository which would be the natural habitat for such an extension.

Bart [14] is interesting as a concrete ORB (although it does not claim adherence to the CORBA
standard) that exemplifies one currently popular approach to object mobility in heterogeneous
distributed systems. Bart is realized as a single “bus” that carries (and stores) relational data and
works mainly in broadcast mode. The translation of all shared objects to and from the relational
form must be specified explicitly by the developers of attached components5. This allows great
flexibility since the representations of objects can be mapped into tuples in arbitrary ways6. On
the other hand, it also means a lot more work as opposed to automated matching of (say) IDL
versions of the representation types by the bus. Note also that automated interface stub generation
offers an alternative mode for object mobility in homogeneous contexts where code as well as data
is mobile. This alternative respects object encapsulation absolutely. Such an alternative is not
possible within the Bart framework.

Genesereth’s facilitators [15] are much more ambitious ORBs that support a strong distribution
model as opposed to Bart’s weak one (there is no single shared bus—each component connects
to others through its own facilitator). Facilitators are supposed to use an extension of first-order
logic to exchange information about port specifications and to negotiate connections using theorem
proving techniques. A similar but simpler model is described by Konstantas [16] where each dis-
tributed component consists of a “nucleus” that communicates with the outside world through a
“membrane” (a kind of ORB) and the entire system has a “multicellular” structure. An interesting
aspect of membranes is that they contain interface type managers that negotiate type compatibility
with foreign membranes. This appears to call for stub generation techniques of the kind I propose.

5There is a striking similarity to the shared tuple-space of Linda.
6The flexibility is further enhanced in Bart by a Prolog-like language called SGL that allows the definition of new

relations based on the extensionally represented ones.

Thatte- 5



References

[1] O. M. Group, “The common object request broker: Architecture and specification.” OMG
Document 91.12.1 Revision 1.1, 1992.

[2] I. Corporation, “OS/2 2.0 technical library system object model guide and reference.” IBM
Document S10G6309, 1992.

[3] S. R. Thatté, “Automated synthesis of interface adapters for reusable classes,” in to appear in
the Proceedings of the 21st Annual ACM Symposium on Principles of Programming Languages
(POPL’94), ACM Press, 1994.

[4] R. M. Amadio and L. Cardelli, “Subtyping recursive types,” in Proceedings of Eighteenth
POPL Symposium, pp. 104–118, ACM Press, January 1991.

[5] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell, “F-bounded polymorphism for
object-oriented programming,” in Proceedings of Fourth International Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), London, U.K., ACM
Press, Addison-Wesley, 1989.

[6] L. Cardelli and P. Wegner, “On understanding types, data abstraction and polymorphism,”
Computing Surveys, vol. 17, no. 4, 1985.

[7] J. C. Wileden, A. L. Wolf, W. R. Rosenblatt, and P. L. Tarr, “Specification-level interoper-
ability,” Communications of the ACM, vol. 34, pp. 72–87, May 1991.

[8] S. Microsystems, “Network programming guide.” Part Number: 800-3850-10, 1990.

[9] D. Kapur and H. Zhang, “RRL: A rewrite rule laboratory,” in Proceedings of 9th Conference
on Automated Deduction (CADE-9), Argonne, Illinois, USA, Springer-Verlag, 1988. LNCS
310.

[10] S. J. Garland and J. V. Guttag, “A guide to LP, the Larch prover,” Tech. Rep. 82, DEC
Systems Research Center, 1991.

[11] P. Wadler, “Deforestation: Transforming programs to eliminate trees,” in Proceedings of Sec-
ond European Symposium on Programming, Springer-Verlag, 1988. LNCS 300.

[12] S. R. Thatté, “Coercive type isomorphism,” in Proceedings of the Fifth Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’91), pp. 29–49, ACM Press,
1991.

[13] S. R. Thatté, “Finite acyclic theories are unitary,” Journal of Symbolic Computation, vol. 15,
February 1993.

[14] B. W. Beach, “Connecting software components with declarative glue,” in Proceedings of the
14th International Conference on Software Engineering, Melbourne, Australia, pp. 120–137,
ACM Press, May 1992.

[15] M. Genesereth, “An agent-based approach to software interoperation,” Tech. Rep. Logic-91-6,
Stanford University Logic Group, 1991.

[16] D. Konstantas, “The implementation of the Hybrid cell,” in Object Frameworks (D. Tsichritzis,
ed.), Centre Universitaire d’Informatique, Université de Genève, 1992.

Thatte- 6



4 Biography

Satish R. Thatté is an Associate Professor of mathematics and computer science at Clarkson
University. The focus of his current research is language design and software engineering issues
connected with static and dynamic type systems. In the past he has worked in functional program-
ming and symbolic computation including term rewriting systems and equational unification. He
has previously taught at the University of Michigan and the University of California at San Diego.
He received a Ph.D. in Computer Science from the University of Pittsburgh in 1982.

Thatte- 7


