
Maximizing Reuse with an Evolution Oriented Domain Engineering

Guillermo Mayobre

Hewlett Packard

Grenoble Networks Division

5, Ave Raymond Chanas

38053 Grenoble CEDEX 9

France

Email: gm@hpgntol1.grenoble.hp.com

Abstract

Software development on the context of domain of application (domain focussed software
development) may be seen as evolutionary development were software representing core domain
concepts are extended/adapted to meet new product requirements. On such a context, man-
aging the evolution of existing software is key to keep development costs under control. An
evolution oriented domain engineering including a domain analysis phase with special focus on
the identification/prediction and characterization of the variability, provides a framework to
successfully master the evolution of software.

This paper summarizes some of the results carried out on the context of the European
Research project PROTEUS (ESPRIT project 6086), together with some practical results from
the software reuse program at the Hewlett Packard Grenoble Networks Division.

Keywords: Domain, variant, invariant, impact analysis, evolutiveness, adaptive, cohesiveness
with respect to variability, model predictability, model coverage, taxonomy of variability, spe-
cialization attribute, factors of variability.

Mayobre- 1



1 Background

Domain oriented product development is today one of the prevalent ways of developing products.
Corporations, companies, must of the organizations are almost organized around product lines or
domains of applications. Simply because this is the most natural way of centralizing, capitalizing
and maximizing the reuse of knowledge. Naturally the solution space corresponding to this domain
oriented organization of the problem space is also domain oriented.

Applications of the domain represents specific solutions to the problem space. They are usually built
on an incremental manner, evolving from the existing software. A part of their software represents
core functionality of the domain, usually shared between several applications, and another part
represents specific functionality.

What is important, is to abstract, from those specific solutions, generic specifications to derivate
reusable, generic, highly evolutive, solutions to be able to implement new requirements/functionality
within the domain at the lowest possible cost.

Up to now, most of the existing domain analysis approaches aim at preparing reuse by focussing
on the identification of the common, invariant parts of the systems in the domain. The approach
presented in this paper puts a strong emphasis on the identification/prediction and characterization
of the variability, essential to master evolution. (Mechanisms dedicated to the identification of the
invariant part are not described here, they are based on the common methodological framework
that underlies current methods).

2 Position

2.1 Classifying Functionality

Functionality involved in the development of new systems may be classified in two categories.: In-
variant and Variant. [1] Invariant functionality is the set of components or components fragments
that are used without changes. It provides the kernel of functionality around which new systems
are built. By definition invariant functionality cannot create new systems since it lacks the cus-
tomization needed to meet new requirements. Variant functionality is the set new functionality
that must be added/changed to customize invariant components. It provides novel functionality
to address new needs. On domain focussed software development, invariant functionality usually
represents domain commonalities, core functionality of the domain, that are reproduced from one
application to another. Variant functionality is usually added or replaced in an incremental manner
and represents a small percentage of the total implemented functionality of the system. This way
of development is usually called an incremental evolutionary software development process.

An adaptive software development strategy is extremely well adapted to be used in this context.
Such a strategy uses large frame structures as invariants (supporting the invariant functionality)
and restricts variability to low level isolated locations within the overall structure. As it attempts
to keep most of the overall structure invariant, adaptive strategy helps to keep development costs
under control when reusing or leveraging invariant functionality from one existing system to the
new one. However, because it also tend to be application specific and relatively inflexible, it may
burden the cost of addition of variant functionality, increasing the overall costs of development of
new systems.

Mayobre- 2



To avoid this situation and minimize the costs of addition of variant functionality we need to
add flexibility to those selected locations within the overall structure where variant functionality
is to be plugged. In other words, the key point to master evolutionary software development is
the creation of an evolution infrastructure (set of methods, tools and operating practices) that
minimizes both, the cost of reusing/leveraging invariant functionality and the cost of addition of
variant functionality. Methods and tools are those involved in the domain engineering activity. By
operating practices we understood the set of well known rules and mechanisms that allow to obtain
results on a systematic and repeatable way.

2.2 The Evolution Oriented Domain Engineering

It consist basically on three main activities:

1. Evolution specification,

2. Evolution control,

3. Instance implementation.

The evolution specification activity consists on the domain analysis, the domain modeling and
the domain architectural design processes. We made the distinction between the domain analysis
process referring to the activities of collecting and classifying data, and the domain modelling
process as referring to the design of a formal structure for the descriptions. The combined results
of those activities are the domain specifications model, and the taxonomy of domain variability.
By domain specifications model we understood the definition of entities, operations, relationships
and events that abstracts domain commonalities and variances across the systems, together with a
classification of them. [2].

The result of the architectural design activity is the domain architectural model that represents
the generic architecture (or set of architectures) of the domain from where specific instances are
derived. The contribution of our approach is that a particular emphasis is put on the identifica-
tion/prediction and characterization of variability, as we consider it is crucial to specify evolution.
The taxonomy of domain variability is used to encode variance on the model through the special-
ization attributes. Each variance is represented by a set of different values of the specialization
attributes. An instance (specific application of the domain) may be obtained by assigning a vector
of values to the specialization attributes.

The evolution control activity characterizes the evolution induced by a new requirement according
to a taxonomy of variability. In that activity, the new requirement is first translated into a set of
specialization attributes. (i.e. on the network management domain of application, extending the
management to support a new type of device, may impact specialization attributes like: manage-
ment protocol, buffer management subsystem, line throughput performance,...) Then, a vector of
values is assigned to the identified specialization attributes characterizing the instance to be im-
plemented. (i.e. associates values to the already identified specialization attributes: management
protocol = CMIP, buffer management subsystem = class 4, line throughput performance = 800
Mbit/sec, ... ) Finally, if needed, models (domain specification and domain architectural) and
taxonomy of variability are updated to include un-predicted, partially predicted or predicted and
partially implemented variances. Note that this last operation is done only if the evaluation of
benefits induced by the modifications appears to be greater than the costs of updating.

Mayobre- 3



The instance implementation activity, is responsible for the implementation of the specific appli-
cation to meet the new requirement. It extracts from the domain architectural model the specific
architecture of the application to be implemented, identified in the previous step by the set of
values assigned to the specialization attributes, and gets the corresponding specific design. This
specific design is generally incomplete. It is composed of an implemented part representing the
already implemented core functionality of the domain, and a not implemented part representing
the not yet implemented core functionality of the domain and the not yet implemented variant
functionality corresponding to the variability induced by the new requirement.

According to this situation, an implementation strategy is defined that may be summarized as
follows:

• reuse already implemented large frames of software, corresponding to the invariant function-
ality, involved in the implementation of this specific instance,

• develop reusable software corresponding to the not yet implemented core functionality (typ-
ically by using a classical engineering for reuse approach, supported by the existing domain
models), and

• implement specific variability maximizing the external reuse level. At this stage, a classical
Design With Reuse approach should be used. Components to be reused may come for the
software associated to the domain of application, from others domains or from general purpose
libraries.

2.3 Identifying/Predicting and Characterizing Variability

The identification/prediction and characterization of variability are key mechanisms of the evolution
oriented domain engineering process.

Identification/Prediction deals with evaluating factors of variability that influences variations in
requirements within the domain of application. Among the most important are:

Market characterization : evolution and potential for expansion. Variations in functionality
are mainly induced by market trends and market opportunities on mature domains, and
by customer requirements on immature or new domains. Market expansion may also be a
factor inducing changes in requirements: a growing market may result on a more competitive
environment were the reduction of implementation costs of already existing functionality
may conduct to changes on requirements (changes in hardware platforms, performances ...).
Market analysis and customer characterization (of representative customers) are valuable
mechanisms to predict changes/evolutions in functionality.

Technology evolution : Provides information on the number of instances that may be reused
without any technology change and/or the level of abstraction required by the descriptions
on the domain models to be technology independent.

Level of standardization : Is at the inverse of the two precedent a factor of stability. The
highest the level the lower the variability. It may be used to isolate areas of the domain were
the evolution will be none, a few or at least easily predicted. Those areas represents kernels
of stable functionality around which variability may be articulated.

The taxonomy of variability results from the classification of variations identified during the evalu-
ation of factors of variability. To each of the elements of the taxonomy, a factor of risk is associated,

Mayobre- 4



that evaluates its probability of occurrence. During the characterization, each of the elements of
the taxonomy of variability is mapped to the set of corresponding specification attributes in the
domain models. As a result, an internal variability map associating a level of variability to each
specialization attribute and risk of occurrence to each of the instances of the specialization at-
tribute is obtained. The level of variability of a specialization attribute is the number of different
instances (represented by different values) associated to it. The risk of occurrence of an instance
of the specialization attribute is the level of confidence associated to the prediction of occurrence
of that instance.

What is extremely important is to build/modify the models, according to the internal variabil-
ity map, to isolate specialization attributes with a high level of variability, group specialization
attributes with low level of variability and define a strategy of implementation. The level of vari-
ability provides useful information to:

• Isolate specialization attributes with high level of variability into separate locations, what
tends to minimize the cost of implementation of variability. The property of restricting high
level of variability to isolated locations within the overall structure is what we call the model
cohesiveness against variability.

• Group specialization attributes with low level of variability, what tends to increase the in-
variants areas of the model, defined when identifying common/stables parts of the systems
in the domain, and by the way, contributes to maximize the reuse of large frames of soft-
ware between applications. The risk of occurrence of an instance of a specialization attribute
provides information to establish a strategy of implementation:

– the higher the level of confidence associated to a prediction of variability, the lower the
level of abstraction in the specification of the corresponding software.

– the lower the level of confidence associated to a prediction of variability, the higher the
level of abstraction in the specification of the corresponding software.

• Prediction of occurence of variability in the time provides complementary information for the
implementation schedule.

3 Comparison

3.1 Modeling and Representing Domain Concepts

It is extremely recommended to adopt an object oriented approach to build domain models. Essen-
tially because the concepts of abstraction/specialization (to capture commonalities and encapsulate
variances), aggregation/decomposition (to master the complexity) and differentiation, critical to
represent domain knowledge, are inherent to the OO representation. [3]

3.2 Qualifying Domain Models

The rules of construction of the models described above, leads naturally to define the following
metrics, to qualify domain models:

Mayobre- 5



Model coverage : Is the ability to provide reusable software measured by the amount of core
functionality to be implemented by new applications that may be reused from the invariant
part of the model.

Model predictability : Is the capability to predict/anticipate variance, measured by the cohe-
siveness (ability to locate variability on isolated areas of the model) and the costs of devel-
opment anticipated by the strategy of implementation.

The already defined metrics involves lower level metrics such as software development productivity
and component and system costs of reusable software [4, 5, 6]. Note that the model coverage and
model predictability, inderectly measures , the cost benefits of reusing invariants and the cost of
implementing variant, both key costs of the evolutionary software development.

A natural question rises here: what if for a new un-predicted variant, models show a poor coverage
and a bad predictability? The first point to verify, is if the variant is outside of the predefined
domain boundaries. If it is not the case and the variant is not an isolated example, but rather
than that, it predicts a set of variabilities of the same type to arrive, domain models should be
re-considered and a new step of domain engineering will probably be necessary. [7]

3.3 Conclusion and Further Investigation Directions

Up to now at Hewlett Packard Grenoble Networks Division we mostly experienced two approaches
of reuse, the a-posteriori (or reverse engineering) and the a-priori (or domain reuse). They are
essentially different on the process and results.

The a-posteriori approach is simpler, provides immediate return on investment and requires a lower
level of reuse culture on the organization. As a drawback, the return on investment is burden by the
adaptation costs induced by the re-engineering of components not initially designed to be reusable.
The a-priori approach is more difficult and risky and requires a higher level of reuse culture of the
organization. But it presents the advantage of providing high return on investment.

A natural way to introduce reuse in an organization is to start with the a-posteriori approach
to build confidence and create success stories and to migrate incrementally to the a-priori as the
culture on reuse increase and the change is accepted. We are now using both approaches and
by comparison the a-priori approach is about three times better in terms of ROI than the a-
posteriori. However, even in the best cases using an a-priori approach we were able to establish
that the most limitative factor of the ROI are the un-predicted domain variances, that invalidates
domain models by inducing important costs of addition of variant functionality. And obviously,
the longer the domain life cycle the higher the risk. We believe, as confirmed by several first
results, that an evolutionary software development approach, supported by an evolution oriented
domain engineering, with a special focus on the identification/prediction and characterization of
variability, really contributes to maximize reuse return on investments on the context of domain
focussed software development.

Among the further directions of the research are:

• enhance the mechanisms of identification/prediction and characterization of variability to-
gether with their formalization,

• enhance the traceability of variability to increase the accuracy of impact analysis and record
the evolution knowledge,

Mayobre- 6



• provide appropriate tools to support the traceability of variability (research on the area of
hypertext based tools),

• extension/tuning of the reuse economical costs models, used as decisions tools by the intensive
computation of object oriented productivity metrics involved on them.

Further research activities will be done on the context of the European Research ESPRIT project
PROTEUS, and in close collaboration with Hewlett Packard Corporate Engineering and Hewlett
Packard Laboratories. The areas of technology transfer are essentially Hewlett Packard opera-
tional divisions and some European companies member of the PROTEUS consortium. Domain of
applications were this evolutionary approach is being applied today are Telecommunication and
Datatcommunication Networks, and Aerospace applications.

References

[1] Barness and Bollinger, “Making Reuse Cost Effective,” IEEE Software, January 1991.

[2] R. P. Diaz and G. Arango, “Domain Analysis and Software Modelling,” in IEEE Computer

Society Press Tutorial, IEEE Computer Society Press, 1991.

[3] J. Rambough and All, Object Oriented Modelling and Design. Prentice-Hall, 1991.

[4] D. Balda and D. A. Gustafson, “Cost Estimation Models for the Reuse and Prototype Software
Development Life Cycle,” ACM Sigsoft Software Engineering Notes, vol. 15, p. 42, July 1990.

[5] G. Mayobre, “Using Code Reusability Analysis to Identify Reusable Components from SW
Related to an Application Domain,” in WISR 1991 Proceedings, Department of Computer
Science, University of Maine, 1991.

[6] Caldeira and Basili, “Identifying and Qualifying Reusable Software Components,” IEEE Com-

puter, February 1991.

[7] B. Boehm, “A Spiral Model of Software Development and Improvment,” IEEE Computer,
vol. 21, May 1988.

Mayobre- 7


