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Abstract

Inheritance has many beneficial uses, but merging them all into a single hierarchy can bring
out serious conflicts. The reasons there are such conflicts, and the reasons why they are com-
monly allowed in oo languages can be seen by examining the different applications of inheritance,
and who makes use of them. To illustrate this point, this position paper includes a rudimentary
taxonomy of the various uses for inheritance in oo programming. The primary partition in the
taxonomy, between inheritance as used by the implementer of a class or as used by the client
of a class, helps to point out the ways various uses of inheritance can conflict, and can hamper
effective programming.
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1 Background

For the past several years, the Reusable Software Research Group at the Ohio State University
has been exploring the technical problems of software reuse, focusing on a disciplined approach
to software engineering as a possible solution. In aiming for a discipline of software construction
that will scale up to large systems, the RSRG has centered on the concept of supporting modular
reasoning or local certifiability at the component level [1, 2]. In short, the client of a reusable
component or subsystem should only have to consider a bounded amount of information (i.e., local,
rather than global) when reasoning about whether that component is the correct one to choose,
and whether it is being used correctly. [3] describes one way to ensure that all components have
this property, by applying a specific software discipline.

For most oo languages in use today, programmers are likely to take modular reasoning about
classes as a given. Unfortunately, the inheritance mechanism as it is most commonly realized
actually prevents reasoning about classes in a modular fashion, often in very subtle ways [4]. It
is possible to overcome this problem by only using inheritance in a disciplined way. This position
paper explores some of the reasons for the conflicts between inheritance and modular reasoning,
which are actually conflicts between different ways that inheritance is used in programming, and
in reasoning about classes.

2 Position

Inheritance, which allows new items to be defined with respect to already existing items, is now
widely used in software construction. In fact, inheritance is almost universally regarded as a
cornerstone of methods termed “object-oriented” [5]. One reason for the success of inheritance
is the fact that it meshes with human cognitive abilities—new entities are defined by saying how
they are different from existing entities, which is very similar to the way people seem to learn by
association, learn rules of generality, and learn exceptions to such rules.

In a programming context, inheritance has many beneficial uses, but merging them all into a single
hierarchy can bring out serious conflicts. Many OO practitioners know that certain inheritance
practices are not advisable, such as hiding or removing methods in descendant classes, or arbitrarily
redefining method semantics, because subclasses that do not behave as expected may be produced.
What is the real reason for such conflicts, and why are they allowed in current oo programming
languages? An answer can be found by examining the different applications of inheritance, and
who makes use of them.

Figure 1 depicts a taxonomy of the various uses for inheritance in object oriented programming
(oop). This taxonomy is not meant to be exhaustive, but it does illustrate several interesting divi-
sions. The primary partition in this figure is between inheritance in the implementer’s dimension

and inheritance in the user’s dimension [6]. From the implementer’s perspective, inheritance has
many uses in creating or defining new modules, classes, or objects. From the client’s perspective,
inheritance has many uses in understanding, applying, and reasoning about classes.

Note that for the remainder of this discussion, I will use the term class to denote a software artifact
defined within an inheritance framework. Similarly, the terms child class or subclass will be used
to refer to a software artifact that inherits from some parent class or superclass. I have chosen
these terms since they are commonly used and understood, but I do not wish to imply that only
class-based inheritance systems will be considered [6].
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Figure 1: A Taxonomy of Uses for Inheritance
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From the implementer’s perspective, inheritance is often used as a method of programming by

difference. This programming style allows implementers to define new classes differentially, simply
by capturing how they differ from some pre-existing class. Traditionally, this capability has been
put forth as one of the key benefits provided by oo languages, and as one of the main sources of
reuse in oo environments.

The implementer can use inheritance to define the specification of a new class, the implementation
of a new class, or both. Further, when defining the specification of a class by difference, the
implementer can treat the parent class in one of two separate ways:

• The specification of the parent class defines a syntactic interface or protocol. The same inter-
face, with possible variations in behavior, will be inherited by the subclass. This technique
is often used in event-driven frameworks, where the inherited interface defines the call-back
points the framework will use to invoke class-specific behaviors, without restricting what
those class-specific behaviors might be. Virtual or deferred class definitions are one way of
providing such a syntactic interface description in C++ or Eiffel.

• The specification of the parent class defines a behavioral interface, possibly through the use
of an abstract model of object state. This same behavioral description will be inherited by
the subclass. This is usually the stance taken when one wants to equate a subtype relationship
with the subclass relationship. This type of inheritance can be further restricted by requiring
that the subclass have the same abstract model as the superclass, rather than simply requiring
that the behavior be the same.

From the client’s perspective, inheritance is not used to define new classes, it is used to understand
and apply existing classes. Inheritance can be used within the language definition to determine
how classes can be used in language constructs. In this vein, inheritance is most often used for
two purposes. First, it is used in the execution model for many oo languages to describe the
notion of dynamic binding, and how that determines what code operations are executed. Second,
inheritance is very commonly used to determine type conformance for parameters to operations.
Most languages that use this approach choose to interpret inheritance relations as “is-a” or subtype
relations. A class B is a subtype of another class A (B is-a A) if any instance of B can be used
wherever instances of A are required [6]. The combination of subtyping and dynamic binding is
often the key to providing polymorphism in oo languages.

In addition to defining the way classes are used within language constructs, inheritance can also
be used to enhance the way people reason about and use classes. In [6], three distinct forms of
inheritance that are useful for clients are described: is-a relationships, specialization (or generaliza-
tion) relationships, and “like” or similarity relationships. The is-a relation that has already been
described can clearly be used by clients to lower the cognitive load of reasoning about collections
of classes. A similar relation, that a class B is a specialization of another class A, can also be used
by clients as an aid to understanding. A class B is a specialization of A if the instances of B can
be obtained from those of A through some form of restriction. [6] gives the following examples of
specialization:

. . . Strings can be viewed as specializations of arrays in which the elements must be
characters, arrays can be viewed as specialization[s] of dictionaries in which the keys
(subscripts) must be positive integers. [6, p. 219]

Finally, the “like” relationship implies that two classes are the same except for some clearly de-
lineated differences. A set is like a bag, but it does not permit duplicates to be inserted. This
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relation can be used to structure a collection of classes into a hierarchy that promotes understand-
ing and careful “chunking” of differences (as opposed to a hierarchy set up for strict subtyping, or
for defining specifications by difference).

Note that in typical practice (e.g., C++, Eiffel), an oo language only only supports a single
inheritance hierarchy and all of these alternatives are blended together in this single language
mechanism. Programmers working in oo environments most likely focus on inheritance as a balance
between a subtype hierarchy, a code inheritance hierarchy, and a (syntactic) interface inheritance
hierarchy.

From the point of view of supporting modular reasoning about programs, the uses of inheritance
depicted in Figure 1 pose many challenges. When reasoning about the correctness of a given class
C, one must wear the hats of both implementer and client:

• To reason about the correctness of a class C (which consists of a specification and imple-
mentation), one must consider the other classes (and inheritance relations) that went into
defining the interface and code that realize C.

• To reason about the correctness of the code realizing the class C, one must also consider the
classes that C is a client of.

Thus, all of the uses of inheritance in Figure 1 must be considered—not just those seen from the
client’s perspective.

Unfortunately, formal treatments of inheritance often center around an is-a interpretation of the
inheritance hierarchy, which fails to address all of the inheritance uses discussed above. This
interpretation is also at odds with the way inheritance is used in practice. If the interpretation
were correct, and only true is-a relations were permitted in an inheritance hierarchy, modular
reasoning would then be feasible. This is the approach taken in resolve, where an implementer
may only make use of inheritance through a very tight interpretation of abstract model specification
inheritance (at the lower left of Figure 1). This restriction ensures that the single inheritance
hierarchy present can only contain is-a relations.

Most often, however, this restriction is not made. A typical oo language like Smalltalk, C++, or
Eiffel contains a single inheritance mechanism which is used for many (or even all) of the purposes
described in Figure 1. This hopelessly muddles inheritance of implementation or representation
details with the more abstract inheritance relations like subtyping. As a result, modular reasoning
is not feasible, since the inheritance relationship itself does not have a stable meaning.

Further, class-based oo systems like Smalltalk, C++, and Eiffel pose specific problems for modular
reasoning:

In general, a class mechanism enforces the restriction that all objects of a specific class
have the same representation. [6, p. 214]

Neither [class-based system] separates the two notions of specification and implementa-
tion completely because there is always a one-to-one correspondence between the two.
[6, p. 227]

The intertwining of specification and implementation concepts within a language can hamper mod-
ular reasoning because it allows implementation details to “creep in” to specifications.
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In C++ and Eiffel, deferred or virtual classes are used to further separate specifications and imple-
mentations by placing the specification in a (virtual) superclass distinct from the concrete imple-
mentation (in a subclass). Disciplined use of this technique can remove the blurring of specifications
and implementations inherent in class-based inheritance, but does not completely address the other
problems limiting modular reasoning.

It appears that it might be possible to support modular reasoning within an inheritance framework,
but only if conflicting uses of inheritance are decoupled by placing them in distinct hierarchies, and
if the guarantees that must be made about information hiding along inheritance relations are
completely spelled out. Without this approach, it appears that the scope of uses for inheritance
must be significantly limited to make modular reasoning feasible.

3 Comparison

The central theme in Section 2 is separating the mechanism of inheritance from the ends it can be
used to achieve. As in most cases where there is more than one possible goal, conflicts between
goals arise. A language designer who wishes to ensure the correctness of his typing system may
choose to restrict inheritance in certain ways [7, 4] to achieve this, which may in turn prevent
some programmers from achieving other goals (certain kinds of code inheritance). Alternatively, a
programmer may prefer to arrange his classes in a way that best exploits code sharing, which may
interfere with a user’s ability to cleanly understand and reason about the class hierarchy.

In [6], many of these same conflicts are raised. In the end, LaLonde concludes that (arbitrarily
many) distinct inheritance hierarchies are needed to separate the different inter-class relationships
that are being captured. However, in [6], it is the actual conflicts of different inheritance practices
that drives the discussion—the goals that drive the practices emerge from the discussion of the
conflicts, rather than the other way around.

As mentioned in Section 2, attempting to apply formal methods in an oo environment forces this
problem into the open. Most often, the approach of researchers is to give a formal definition of
inheritance that has “good” properties, and then restrict inheritance to such uses [8, 4, 9]. In some
cases, authors have even recommended separating the inheritance hierarchy used for type checking
(i.e., the “specification” inheritance hierarchy) from that used for code sharing [10]. Unfortunately,
few, if any, of these approaches is based on the goals that inheritance is used to achieve—instead,
they are often based on a single conception of a “good” inter-class relationship. Fortunately, all
of these approaches tend to choose “good” inheritance relations that ensure modular reasoning is
possible.

By focusing on “what” programmers and clients want to do with inheritance, instead of simply
the “how” of the inheritance mechanism itself, one can step back from the problem and gain a
slightly different perspective. It is clear that some of the “whats” require conflicting properties
of the inheritance relationship itself. Perhaps as LaLonde and others have recommended, using
distinct hierarchies (or lattices) for separate inter-class relationships is the way to go. Of course, by
examining the support needed for each application of inheritance, one will find that there will be
unique restrictions and requirements for these distinct lattices. Exploring what those requirements
are, and how the lattices should be interrelated, is an area ripe for research.
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