
KAPTUR, Elvis, Hendrix, and Other Acronyms:

Domain Engineering at CTA

Sidney C. Bailin

CTA Incorporated
6116 Executive Boulevard

Rockville, MD 20852
Tel: (301) 816-1200

Email: sbailin@cta.com

Abstract

This is less a position paper than a short summary of what CTA’s Software Development
Automation Group (SDAG) is doing in the area of software reuse. You can think of it as a
statement of what we see as important, and the key techniques to be pursued. For background
on our methodology of reuse, see my WISR 92 position paper, as well as others listed in the
references section.

Keywords: Domain Analysis, Reuse, Model-Based Reasoning, Case-Based Reasoning, Concept
Formation, Repository Interconnection

Workshop Goals: Networking. Checkpointing the state of the community.

Bailin- 1



1 Background

We have been working in reuse for NASA/Goddard Space Flight Center’s Data Systems Technology
Division since 1986. This work has led to the development of most of the tools described below.
Recently, we have begun working as part of the Unisys STARS team to introduce KAPTUR tech-
nology into that environment, and to unify it withthe STARS Orgasnizational Domain Modeling
(ODM) method. We have also recently begun work with the Air Force’s Rome Laboratory to
incorporate a Hendrix-like learning capability in the Knowledge Based Software Assistant.

2 Position

KAPTUR: Domain Engineering Tool. KAPTUR (Knowledge Acquisition for Preservation of
Tradeoffs and Underlying Rationales) is a tool for recording, structuring, and reusing engineering
knowledge. Such knowledge includes issues that were raised during development, alternatives that
were considered, and the reasons for choosing one alternative over others. KAPTUR organizes
software knowledge into domains, which are families of similar systems (examples of domains include
satellite control center software, radar manager software, etc.). Within a given domain, assetsQ
existing systems and subsystems, object classes, function implementationsQ are organized in terms
of their distinctive features. Each distinctive feature represents an important engineering decision
that went into the development of an asset. The distinctive features provide a means of comparing
and contrasting alternative technical approaches in a domain. Assets at any hierarchical level
can be compared and contrasted in this way, from system and subsystem architectures down to
individual function implementations.

Each feature of an asset has certain information that is always attached to it:

• a description of the engineering decision that the feature represents

• a summary of the tradeoffs that were considered in arriving at the decision

• the ultimate rationale for the deicision.

KAPTUR uses hypertext techniques to allow the user to navigate among assets, their features,
and the background information of a feature. The user can ask to see the altnernatives of a given
feature, and will be pointed to those assets not possessing that feature.

ElvisC - A Tool for Building a Domain Taxonomy. ElvisC 1 is a tool that applies a concept
formation algorithm (called Cobweb) to automatically organize assets into a hierarchy of meaningful
categories. Asset descriptions are provided to ElvisC in terms of features. The feature space is
open-ended, and can be interactively extended when an asset is entered. In essence, ElvisC looks
for features that tend to occur together, and uses these as the basis for defining clusters of assets.
ElvisC was originally developed for NASA/Goddard as a tool for organizing and maintaining a
component repository, but we see it also as a domain analysis tool. Domains typically go through
a process of evolution: in the early stages a faceted classification is often the most natural or
feasible way to describe concepts in the domain; later, as practice becomes more regular and the
alternatives become clearer, a hierarchical classification becomes feasible. ElvisC can be used as a
tool to facilitate this evolution by suggesting likely categories in a hierarchical classification.

1ElvisC stands for Experiment in Libraries with Incremental Schemata and Cobweb.

Bailin- 2



Repository Interconnection Standard. We are active in an AIAA working group to define a
standard for reuse repository interconnection. This work is being performed in conjunction with
the Reuse Library Interoperability Group (RIG). The work builds upon the Asset Library Open
Architecture Framework (ALOAF) developed for the STARS program, and is based on a three-level
information model which carries the ALOAF to a greater degree of detail. This work has just begun
and is expected to result in prototype demonstrations towards the end of the calendar year.

Domain Analysis in Flight Simulation. The Mission Simulator System (MSS) is a highly
configurable flight simulator. MSS is sold as a product and has also served as the basis for several
part-task trainers (PTTs) built for the Government, including the F-15/F-16 PTTs for the Air
National Guard. The configurability of MSS stems from the fact that instruments, controls, engines,
weapons, operational flight programs (OFPs), jammers, artilleries, radars, and missiles (JARMs)
can be added or deleted without affecting the remainder of the simulation. MSS is a commercially
successful example of domain engineering: the software adheres to a reference architecture for flight
simulators that can be (and has been) instantiated to meet widely varying requirements.

Domain Analysis in Satellite Control. In 1988 CTA performed a domain analysis of satellite
control centers for NASA/Goddard Space Flight Center. The analysis was based on a study of
seven existing systems, from which a reference architecture was abstracted. The architecture was
then refined using object-oriented partitioning criteria. The KAPTUR tool was developed initially
to support this work. Since then, a domain analysis of satellite command management systems has
been performed for the same client, and the results put into KAPTUR. Work is now continuing on
the development

Knowledge from Pictures Environment. This is a multi-tool environment intended to support
high-level model-based reasoning about software. The environment infrastructure consists of a
graphical language for describing component interconnection, a table-based behavior description
language, and a model repository. The repository is a set of model descriptions that cross- reference
one another. In the model repository, there is no explicit notion of system, only the notion of
component. A component may contain other components, and in this sense it may be considered
as a system; on the other hand, a component containing other components may itself occur as
a subcomponent in a still higher-level component. This uniform treatment of ”components” and
”systems” encourages the reuse of existing models as building blocks in new models, with the
consequent semantic benefits mentioned in the Introduction.

We distinguish between component types and component instances. Each model in the repository
describes a component type. Instances of this type may occur in other (higher-level) models. The
description of a higher-level model M references the descriptions of the component types whose
instances M contains.

The distinction between component types and instances has a couple of advantages. First, a
model can contain more than one instance of a given component type. For example, the model
of a building’s climate control system may contain more than one air-conditioning unit. Second,
a change to the definition of a component type is automatically propagated to its instances in
all other models. The user of the tool is need perform multiple updates to implement a single
conceptual change.

Tools that operate in the KFP environment include the Formal Interconnection Analysis Tool
for verifying design properties, the Diagnostics Inferred from Graphics Tool which generates fault
detection and isolation rules from the model descriptions, and the Multi-Aspect Simulation Tool,
described below.

Bailin- 3



Multi-Aspect Simulation Tool (MAST). MAST is an environment for building and executing object-
oriented models of complex electro-mechanical systems. The design is based on the connection
manager approach described in the Software Engineering Institute’s (SEI’s) recommendations for
flight simulators. The SEI approach has been extended by independently formalizing each aspect
of a component’s behavior, integrating work on discrete event simulation done by Bernard Zeigler
at the University of Arizona, and implementing the design using the object-oriented techniques of
multiple inheritance and virtual base classes. The models produced in this environment are highly
comprehensible and unusually maintainable. The subcomponents produced during construction
of the model have been reused in different models without modification. The types of behavior
exhibited by the model during simulation have been modified and extended without difficulty.

Hendrix: A Meta-Tool. Hendrix 2 is an existing meta-modeling capability which has grown
out of CTAUs work for NASA/Goddard and is based on CTA’s Configurable Graphical Editor.
Hendrix started off as an automated software design critic which is configurable to support different
graphical design notations and different design rules. The Hendrix rule base is implemented in
NASA’s CLIPS language. Hendrix supports two functions that have made its evolution into a
meta-tool a technically straightforward task: 1) the ability of the user to easily define new design
rules (without having to code them in CLIPS), and 2) the ability of the user to define new design
concepts in terms of previously defined concepts.

Defining new rules in Hendrix. The user defines a new design-evaluation rule by drawing an
example of the erroneous situation which is to be caught by the tool. Hendrix generalizes the
example into a CLIPS rule that will detect instances of this situation within an engineering model.
The user specifies a diagnostic message to be issued when the rule fires. The diagnostic message can
reference the design elements in the exampleQthese element identifiers are replaced by variables in
the generated rule, and in any particular model will be instantiated to the model elements involved
in the violation.

Defining new concepts in Hendrix. A similar approach is used in Hendrix to allow the user to define
new concepts. In this case, the user draws an example of an instance of the concept, and Hendrix
generates a CLIPS rule that asserts the concept as holding whenever this pattern is detected in
a model. More than one pattern can be designated as examples of a particular concept. Hendrix
generates one recognition rule for each pattern (this allows the user to define recursive concepts).

Associating concepts with graphical symbols in Hendrix. Having defined a new concept to Hendrix,
the user is prompted to select either an arc type or a node type to represent the concept. A palette of
available arc types (e.g., dotted, dashed, with/without arrows, etc.) and node types (i.e., different
geometric shapes) are presented. If the new concept is a relation between objects, the user is
prompted to select an arc type; if the new concept is a type of object, the user is prompted to
select a node type to represent that type of object.

3 Comparison

The KAPTUR approach to domain analysis is similar in spirit and in some details to the STARS
Organizational Domain Modeling method (see the paper by Roberta Burdick in this workshop).
Specifically, the emphasis on describing exemplars, the distinction between descriptive and pre-
scriptive modeling, the use of a hierarchical feature space for characterizing alternatives in the
domain, and the emphasis on capturing contextual information such as tradeoffs and rationales,

2Hendrix stands for Help Evaluating New Designs with Rules Interactively Extendible.

Bailin- 4



are all common between KAPTUR and ODM. This has led us to seek a unification of the two
approaches.

Our work on model-based reasoning in software engineering draws on ideas developed at the Soft-
ware Engineering Institute (see Sholom Cohen’s paper in this workshop) and on ideas of Parnas
(1990) and Harel (1992). The basic motivation is to view softwae engineering as a process of
creating models, asking questions about them, and refining them, with as much automated code
geneation as possible to convert the models into code.

There has been a fair amount of experimental work in applying machine learning to aspects of
software development (Esteva and Reynolds, 1990; O’Reilly and Oppacher, 1991; Reynolds and
Maletic, 1991; Willis and Paddon, 1991; Wu and Leong, 1991) but our work views learning as an
essential aspect of a knowledge-based software development environment. In this sense, our work
is guided more by encounters with the problems of knowledge-based software assistance than by an
interest in applying machine learning to a new domain.

4 References

S.C. Bailin and S. Henderson. A tool for reasoning about software models. Proceedings of the
Computer Assurance Conference, ACM Press, June 1993.

S.C. Bailin and S. Henderson. An application of machine learning to the organization of institutional
software repositories. To appear in Telematics and Informatics, September 1993.

S.C. Bailin, F. Paterra, W. Truszkowski, and S. Henderson. Model- based reasoning for system
and software engineering. To appear in Telematics and Informatics, September 1993.

Esteva, J.C. and Reynolds, R.G., 1990. Learning to recognize reusable software by induction. Pro-
ceedings of the 2nd International Conference on Software Engineering and Knowledge Engineering,
Skokie, IL. June 1990.

Harandi, M. and Lee, H-Y. Acquiring software design schemas: a machine learning perspective.
Proceedings of the 6th Annual Knowledge-Based Software Engineering Conference, IEEE Computer
Society Press. 1991.

Harel, D., 1992. Biting the silver bullet: Toward a brighter future for system development. IEEE
Computer, January 1992.

Lee, K. et. al., 1990. An OOD paradigm for flight simulators, 2nd edition. Technical Report of the
Software Engineering Institute, Carnegie Mellon University, Pittsburgh.

O’Reilly, U.M. and Oppacher, F. Learning new features and heuristics for matching and using cases.
Proceedings of the Fourth Florida Artificial Intelligence Research Symposium, Florida AI Research
Society. April 1991.

Parnas, D., Asmis, G., and Madey, J., 1990. Assesment of safety-critical software. Technical Report
90-295, ISSN 0836-0227. Telecommunications Research Institute of Ontario. Queens University,
Kingston, Ontario.

Reynolds, R.G. and Maletic, J.I., 1991. Operationalizing software reuse as a problem in machine
learning. Proceedings of the Fourth Florida Artificial Intelligence Research Symposium, Florida AI

Bailin- 5



Research Society. April 1991.

Willis, C.P. and Paddon, D.J. Combining explanation-based learning and Knuth-Bendix comple-
tion for equational reasoning. Proceedings of the Fourth Florida Artificial Intelligence Research
Symposium, Florida AI Research Society. April 1991.

Wu, F.Y. and Leong, S. A syntax directed approach for learning software translation knowledge.
Proceedings of the Fourth Florida Artificial Intelligence Research Symposium, Florida AI Research
Society. April 1991.

Bailin- 6


