
Spectrum: A Formal Approach to Software

Development with Reusability

Martin Wirsing

Bayer. Forschungszentrum f�ur Wissensbasierte Systeme

Universit�at Passau

wirsing@forwiss.uni-passau.de

This research has been partially sponsored by the DFG-project Spectrum,

the BMFT-project Korso and the ESPRIT working group COMPASS.

Abstract

A formal approach to software development is presented which integrates reuse as an essen-

tial part: the Spectrum approach. Based on type-theoretic, algebraic and functional methods,

the Spectrum project aims at studying methodical aspects, language issues, theory and sup-

port tools of software reuse in an integrated way. A central concept is the notion of software

component which represents software at di�erent levels of abstraction and gives access to

multiple views of software objects. The type-theoretic meta-language serves for specifying

exactly the properties of such components, algebraic methods are used for carrying out formal

developments of speci�cations.

Keywords: algebraic speci�cation, reusable software components, software development,

type-theory

1 Introduction

The increasing demand for more and more complex software systems makes it necessary to change

the process of software development. It is important to reuse already developed software systems

for di�erent applications. In order to achieve this goal and to get the con�dence of the system

developers, reuseable software must be of high quality.

Therefore formal methods become an integrated part of the software construction process: formal

methods provide abstract language concepts for supporting the certi�cation of software; language

speci�c theory of reuse provides the foundations for computer aided development with reuse and

formal methods support the evolution of reusable objects and other reuse activities such as con-

struction, search and classi�cation, integration and con�guration of reusable components. Moreover

1



the integration of formal methods into the software life cycle is becoming an important research

issue [Dort 91].

In the following a formal approach to software development will be presented which integrates

reuse as an essential part: the Spectrum approach has its roots in the CIP project [Baue 81]

and several ESPRIT projects such as METEOR (on algebraic speci�cation and development),

PROSPECTRA (on transformational techniques) and DRAGON (on reusability).Based on type-

theoretic, algebraic and functional methods, the Spectrum project aims at studying methodical

aspects, language issues, theory and support tools in an integrated way.

2 Methods

2.1 Software components

A central aspect of the Spectrum approach is the notion of software component which represents

software at di�erent levels of abstraction and gives access to multiple views of software objects.

Starting from a simple model of the software development process where a development consists

of a sequence of descriptions beginning with a requirement speci�cation and ending with the �nal

program, we de�ne a software component to be a �nite graph whose nodes are software objects such

as speci�cations and programs and whose edges represent relations between such objects. Then each

development sequence can be understood as a particular software component.

2.1.1 Objects

Software objects are speci�cations of functional and non-functional properties, programs and com-

ponents themselves. In general, objects are structured. In particular, structured speci�cations

can be considered as software components related by operations such as inheritance, clientship or

instantiation.

Objects come together with associated attributes such as examples of instances, theorems, meta-

theorems, simulations and di�erent syntactical representations [Lato 91].

2.1.2 Relations between software objects

There are di�erent kinds of relations:

a) Re�nement and implementation relations relating objects at di�erent levels of abstraction.

b) Translations between expressions in di�erent languages. Translations are especially important

for the transition from speci�cations to programs and for the reuse of results from other

languages. For example, for a development in a �rst-order logic it might be interesting to use

results obtained in equational logic with a narrowing-based theorem prover.

c) Multiple views of software objects describe functional properties (such as input-output be-

haviour, invariants and theorems) and non-functional properties (such as concurrency aspects,

complexity mesures and access control) [Cazi 91].

2



Relations are classi�ed according to their abstract properties. Most important are transitivity

and monotonicity which insure the correctness of a sequence of development steps as well as of local

development steps [Broy 80, Baxt 90].

2.2 Development for and with reuse

Software development is understood as the development of a (part of a) sofware component. Soft-

ware components can be manipulated from three di�erent views [Stab 91]:

a) The reuse supervisor maintains the reuse components and is the only one who has "write"

access to the component library.

b) The reuse consultant knows about the content of the whole library and is able to share his

knowledge with "ordinary" reusers.

c) Each reuser has a partial view of the library and constructs particular applications using his

view. The approach also supports the development of software by a group of reusers.

For each view di�erent operations are allowed:

a) The reuse supervisor has the right to release new views of the component. He may extend

existing views and replace parts within a view.

b) A reuse consultant may inspect the whole library and tell the supervisor that a view needs

restructuring.

c) Ordinary reusers may produce new versions of their view by extending, combining and chang-

ing views and may prepare a new version for submission to the supervisor. Cooperation

between several reusers is achieved by formal support for the integration of software objects

and by formal support for conversation between di�erent developers [Rose 91].

3 Language

In Spectrum three di�erent language styles are studied: Type theory, algebraic speci�cation and

functional programming.

3.1 Type theory

As a meta-language for formally expressing components and software developments an extension of

ECC [Luo 91] is used. This is a very powerful calculus in which module concepts and polymorphism

can be expressed adequately with the help of dependent products and dependent sums. A hierarchy

of universes allows to describe programming and meta- programming as well as reasoning and meta-

reasoning in the same framework.

3



3.2 Algebraic speci�cation

For describing design speci�cations in an algebraic style the kernel language ASL [Sann 83] and

their dialects RAP [Gese 86] and OS [Breu 91] are used. ASL provides a few simple but powerful

speci�cation operators for writing speci�cations in a structured way and posesses a well developed

theory for transforming speci�cation expressions and proving properties in a structured way. RAP

allows to write hierarchical speci�cations and is embedded in a convenient development environment.

OS integrates object oriented features into ASL and is well-suited for specifying object oriented

programs.

Algebraic speci�cations do not support dependent types and therefore are less expressive than

type theoretic descriptions. Advantages of algebraic speci�cations are that they are abstract, easy

to manipulate and that they have a well-developed theory together with good programming envi-

ronments.

3.3 Functional programming

SML [Miln 90] is used as functional programming language. SML supports modular and high-level

functional programming and integrates non-functional programming styles (such as references, as-

signments and concurrency) in a clean and transparent way. SML structures correspond to alge-

bras and can therefore be understood as models of equational speci�cations. Moreover its module

concepts can be easily expressed in the type theoretic framework. SML is used for constructing

prototype implementations of speci�cations.

4 Theory

The theoretical background of Spectrum can be divided into two main streams: Foundational studies

and theory of reuse.

4.1 Foundational studies

The foundational studies concern semantical properties of speci�cation and type-theoretic lan-

guages.

4.1.1 Algebraic speci�cations

For algebraic speci�cations a well-developed theory supporting formal developments is available

[Wirs 90]. In particular, the fundamental implementation relation is transitive and monotonic and

therefore satis�es the horizontal and vertical composition property. Using the equations of "module

algebra" structured speci�cations can be transformed into various normal forms and structured

proof calculi allow one to verify the correctness of implementations in a structured way [Wirs 91].

Context induction provides a new method for verifying behavioural implementations [Henn 90].

Most of these results can be extended to object oriented speci�cations [Breu 91].

4



4.1.2 Non-functional speci�cations

For non-functional speci�cation two basic methods are available: In [Baxt 90] a performance mea-

sure is associated with the abstract syntax of program. Then any non-functional speci�cation is

given as the conjunction of preorder assertions between performance expressions. [Jacq 91] advo-

cates the abstract interpretation of speci�cation expressions in order to perform complexity analysis

or measurements and benchmarks.

4.1.3 Integration of formalisms

For relating programs and speci�cations there are two basic semantic approaches. By considering

"programs as speci�cations" one de�nes a translation from a subset of speci�cation expressions to

programs. For example, equational speci�cations with axioms in the form of structural recursive

de�nitions can be directly transformed into functional programs. In the type-theoretic approach

it seems appropriate to consider programs as "realizers" of speci�cations, i.e. the semantics of a

program is considered as a model of the speci�cation.

More generally, type-theoretic descriptions are well-suited for integrating di�erent styles of spec-

i�cations and programs as has been shown by the DEVA project [Cazi 91].

4.2 Theory for reuse

Based on the results of the foundational studies the theory of reuse provides formal support of most

reuse activities. In the Spectrum project we are mainly interested in the follwing issues.

4.2.1 Reuse of components

The construction of reusable components is based on the theory of structured algebraic speci�ca-

tions. In [Wirs 88] a notion of reusable component is developed that represents speci�cations at

di�erent levels of abstraction by a tree of speci�cations where two consecutive nodes are related by

the implementation relation. Due to the fact that the nodes are ASL speci�cations these compo-

nents can be normalized and enjoy vertical and horizontal composition properties. We are currently

studying how these results can be extended to software components consisting of graphs of spec-

i�cations and how functional and non-functional properties can be expressed in a type-theoretic

framework.

Signature matching and the classi�caton of speci�cations by the implementation relation help in

retrieving components from a library. After matching a given abstract problem speci�cation SP

with a speci�cation in the library, an implementation of SP can be automatically constructed from

the implementation found in the library. If the matching is correct then due to the composition

properties the new implementation is correct without requiring any further proof.

In [Henn 91] a formal method has been developed for integrating several module implementations

to a consistent con�guration of the whole system.

5



4.2.2 Reuse of developments

For the reuse of development steps there are two main approaches. [Part 91] and [Baxt 90] use

meta-descriptions of transformations written in a �rst order language whereas [Cazi 91] take the

introduction and elemination rules of the lambda-typed lambda- calculus underlying DEVA. Baxter

studies the di�cult problem of pruning development histories in order to delete non-reusable steps.

Then the sequence of development steps is repaired by integrating socalled "maintenance deltas".

[Rose 91] uses the object oriented design language Telos for formally describing the design decisions

occurring in a development.

5 Support tools

Up to now only tools for the development of speci�cations have been implemented in the Spectrum

project.

The RAP&TIP system is an environment for prototyping hierarchical algebraic speci�cations;

moreover it includes an inductive theorem prover for equational formulas [Frau 91].

The ISAR system gives support for the correctness proof of behavioural implementations

[Baue 91]. The main technique is context induction which is performed with the help of TIP.

Components of RAP speci�cations can be designed interactively with the help of the Speci�ers

Notepad [Breu 90].

Acknowledgement

Thanks go to Stefan Gastinger, Michael Gengenbach, Rolf Hennicker, Robert Stabl (reusability

group of Spectrum) and to Bernhard Reus, Thomas Streicher (semantic group of Spectrum) for

inspiring discussions and many ideas which are re
ected in this paper. Thanks go also to the

working group on formal methods of the First Int. Workshop on Software Reuseability (Dortmund

1991) and in particular to Rene Jaquart and Larry Latour for many new insights into formal support

for software reuse.

References

[Baue 91] B. Bauer: Ein interaktives System fuer beobachtungsorientierte Implementierungsbe-

weise. Diplomarbeit, Universitaet Passau 1991.

[Baue 81] F.L. Bauer, M. Broy, W. Dosch, R. Gnatz, B. Krieg-Brueckner, A. Laut, M Luckmann,

T.A. Matzner, B. Moeller, H. Partsch, P. Pepper, K. Samelson, R. Steinbrueggen, M. Wirs-

ing, H. Woessner: Programming in a wide spectrum language: a collection of examples.

Science of Computer Programming 1, 1981, 73-114.

[Baxt 90] I.D. Baxter: Transformational maintenance by reuse of design histories, Ph.D. Thesis,

University of California, Irvine, Tech. Report 90-36, 1990.

6



[Breu 91] R. Breu: Algebraic speci�cation techniques in object oriented programming environ-

ments. Dissertation, Universitaet Passau, 1991, also to appear in Springer Lectures Notes

of Computer Science.

[Breu 90] R. Breu, H. Windl: The speci�ers notepad - a hypertext system tailored to the design of

algebraic speci�cation, Tech. Report, Universitaet Passau, MIP-9007, 1990.

[Broy 80] M. Broy, H. Partsch, P. Pepper, M. Wirsing: Semantic relations in programming lan-

guages. In: S. Lavington (ed.): Proc. IFIP World Congress - Information Processing 80,

Amsterdam: North Holland 1980, 101-106.

[Cazi 91] J. Cazin, P. Cros, R. Jacquart, M. Lemoine, P. Michel: Construction and reuse of formal

program developments. In: S. Abramski, T.S.E. Maibaum (ed.): TAPSOFT 91, Springer

Lectures Notes in Computer Science 494, 1991, 120-136.

[Dort 91] W. Schaefer (ed.): Proc. First Int. Workshop on Software Reusability, Dortmund, 1991.

[Frau 91] U. Fraus, H. Hussmann: A narrowing-based theorem prover. In: Proc. RTA 91, Springer

Lectures Notes in Computer Science 488, 1991.

[Gese 86] A. Geser, H. Hussmann: Experiences with the RAP system - a speci�cation interpreter

combining term rewriting and resolution. Proc. European Symposium on Programming.

Springer Lecture Notes in Computer Science 213, 1986, 339-350.

[Henn 90] R. Hennicker: A proof principle for behavioural abstractions. In: A. Miola (ed.): Proc.

DISCO 90. Springer Lecture Notes in Computer Science 429, 1990, 101-110.

[Henn 91] R. Hennicker: Consistent con�guration of modular algebraic implementations. Tech.

Report, Universitaet Passau, MIP-9102, 1991.

[Jacq 91] R. Jacquart: Reuse of formal developments. In: [Dortmund 91]

[Lato 91] L. Latour: In: [Dortmund 91] .

[Luo 91] Z. Luo: A unifying theory of dependent types. Tech. Report, University of Edinburgh,

ECS-LFCS-91-154, 1991.

[Miln 90] R. Milner, M. Tofte, R. Harper: The de�nition of Standard ML. London: MIT Press,

1990, 101 p..

[Part 91] H. Partsch, N. Voelker: Another case study on reusability of transformational develop-

ments - Pattern matching according to Knuth,Morris and Pratt. In: M. Broy, M. Wirsing

(eds.): Methods of Programming, Springer Lecture Notes in Computer Science, to appear.

[Rose 91] T. Rose: Entscheidungsorientierte Versionen- und Kon�gurationenverwaltung. Disserta-

tion, Universitaet Passau, 1991.

7



[Sann 83] D. Sannella, M. Wirsing: A kernel language for algebraic speci�cation and implementa-

tion. In M. Karpinski (ed.): Colloquium on Foundations of Computation theory. Springer

Lecture Notes in Computer Science 158, 1983, 413-427.

[Stab 91] R. Stabl: Personal communication, September 1991.

[Wirs 88] M. Wirsing: Algebraic description of reusable software components. In: Proc. COM-

PEURO '88, Computer Society Press of the IEEE, no. 834, 300-312, 1988.

[Wirs 90] M. Wirsing: Algebraic speci�cation. In: J.van Leeuwen (ed.): Handbook of Theoretical

Computer Science, Vol. B, Amsterdam: North-Holland, 1990, 675-788.

[Wirs 91] M. Wirsing: Stuctured speci�cation: syntax, semantics and proof calculus. In: H.

Schwichtenberg (ed.): Proc. International Summer School Marktoberdorf 1991, to appear.

6 About the Author

Prof. Dr. Martin Wirsing studied Mathematics at the University of Paris and at the Technical

University of Munich. From 1975 until 1983 he worked as a research and teaching assistant at the

Sonderforschungsbereich \Programmiertechnik" at the Technical University of Munich. During this

time he had been a member of the Munich CIP group that worked on program speci�cation and

transformation. He wrote his dissertation at the Technical University of Munich (with the title \Das

Entscheidungsproblem der \adikatenlogik erster Stufe mit Funktionszeichen in Herbrandformeln")

and his habilitation (1984 with the title \Structured algebraic speci�cations: a kernel language").

Since 1985 he is full professor for Computer Science at the Faculty of Mathematics and Computer

Science at the University of Passau. He is working in the ESPRIT projects METEOR, DRAGON

and in the ESPRIT Working Group COMPASS. From 1986 to 1988 he had been the chairman

(Dekan) of the Faculty of Mathematics and Computer Science of the University of Passau, and

from 1988 till 1990 he was the vicechairman (Prodekan) of the faculty. Martin Wirsing has pub-

lished more than 90 scienti�c papers in the areas of mathematical logic, programming methodology,

semantics of programming languages, program transformation and program development, formal

speci�cation and algebraic speci�cation languages. Since 1990 he is one of the directors of the

\Bavarian Research Center of Knowledge-based Systems" (FORWISS). He is member of the edito-

rial board of several scienti�c journals including Theoretical Computer Science, Technique et Science

Informatique, RAIRO-Informatique Theorique et Applications and Research Notes in Theoretical

Computer Science.

8


