
Criteria for Comparing

Domain Analysis Approaches

Steven Wartik Rub�en Prieto-D��az

Abstract

This paper describes a set of criteria for comparing domain analysis approaches. The crite-

ria were derived from a study of several well-known approaches. They help people understand

the rôle that domain analysis can play in software development. They are therefore of im-

portance to both practitioners who need to choose an approach, and to researchers seeking to

better understand the nature of domain analysis.

Keywords: domain analysis, software process

1 Introduction

Research on domain analysis in recent years has produced many approaches. Practitioners are often

confused about the right domain analysis approach for their needs|if indeed a single approach can

be said to be \right". At the Software Productivity Consortium, several domain analysis approaches

are, or have been, espoused. These include:

� The approach originated by the Consortium's original Synthesis project, and subsequently

re�ned by the Domain Analysis project headed by Dr. Alan Jaworski [Jawo 90].

� The current Synthesis methodology, for which Grady Campbell is the chief architect [Camp 90].

(N.B. This approach is called \Synthesis" in the rest of this paper.)

� The approach by Dr. Rub�en Prieto-D��az, �rst developed at the University of California at

Irvine, and re�ned at GTE, Contel, and the Consortium [Diaz 87].

Three approaches within a single organization has, understandably, led to some confusion. Ac-

cordingly, the Consortium decided to study these approaches, as well as those of other researchers.

The goal was to help organizations understand which approach, or approaches, would best meet

their needs. We also wished to know if we could develop a uni�ed domain analysis approach,

incorporating concepts from these and other methods. This paper briey summarizes our work.

1

2 Approach

The approach we used was to study the three approaches mentioned above, plus the FODA ap-

proach of SEI [Kang 90]. We choose the �rst three because we were especially interested in making

recommendations on in-house methods. We also wanted to include research done outside the Con-

sortium. We selected FODA because it is an amalgamation of various approaches, including those

of Prieto-D��az, Lubars [Luba 88], and KAPTUR [Moor 89].

We studied the approaches with the aim of determining their similarities and di�erences. This

amounts to a domain analysis of the domain analysis approaches. (We did not follow a formal

domain analysis process, although what we used was closest to the domain analysis approach of

Synthesis.) The result was the following products:

� A set of similarities among all approaches.

� A set of di�erences among the approaches studied. Each di�erence corresponded to something

we believed would have an organizational impact. We therefore choose fairly high-level criteria

for comparison; we deliberately avoided such factors as \approach A derives product X whereas

approach B does not", since we could not relate these factors to decisions an organization

would want to make in choosing between approaches.

� A terminology glossary that helped us �nd the similarities and di�erences.

The four approaches turned out to share certain characteristics. These included high-level ob-

jectives (the creation of artifacts that allow for e�ective reuse, and the capture and formalization

of domain knowledge), the sources of domain knowledge (domain experts, reference materials, ex-

isting systems), and|to the extent that their objectives are similar|agreement on di�culties in

performing domain analysis (the need for precise de�nitions of domain artifacts, how to validate

the results of domain analysis, and economic considerations).

Table 1 shows the criteria we used to study the di�erences, and how each approach handles each

criterion. Space precludes detailed discussion of them. Generally speaking, these criteria are from

three categories:

� The relation to the software development process. Domain analysis may or may not impose

constraints on software development processes and paradigms. This can have signi�cant

organizational impact: the less exible an organization is to change, the more di�culty it

will have in incorporating a domain analysis approach that imposes constraints on process.

As Table 1 shows, an approach can be part of another life cycle|typically a pre-requirements

activity (FODA, Jaworski, and Prieto-D��az), or a complete software process in and of itself

(Synthesis).

� The paradigm of problem space models. Domain analysis requires analyzing problems within

a domain and determining solutions for those problems; ideally, both customers and develop-

ers communicate in terms of the domain-level concepts. The paradigm of the problem space

model, then, shapes how people think about and communicate in the domain. In the ap-

proaches we studied, the problem space model can emphasize generic, reusable requirements

2

(Jaworski and Prieto-D��az), it can be a decision model (Synthesis), or it can treat both equally

(FODA).

� The primary product (or products) of domain development. This tells whether the paradigm

of problem space models|the important analysis focus|is also the focus during development

(or reengineering) of the reusable components that are used in applications in the domain.

Table 1 shows that the primary product can be a reuse library (FODA, Jaworski and Prieto-

D��az) versus an application engineering process and supporting environment (Synthesis).

3 Results

The di�erences illustrate some fundamental di�erences in philosophies towards domain analysis.

Most researchers agree that it is helpful for reuse, but di�er in just what that approach to reuse

should be. The two important characteristics that distinguish the approaches in this regard are the

points in the process where reuse based on domain analysis can happen, and the degree to which

domain analysis can determine how to do reuse.

We were primarily interested in understanding the Consortium approaches. We made the fol-

lowing observations based on our analysis:

� Prieto-D��az's method is useful when there is an existing software base for a domain, when

current and future projects can bene�t from reuse but must design and possibly implement a

signi�cant portion of an application from scratch, and when application developers foresee a

need for formalizing solution-level characteristics of a domain.

� Synthesis is useful when systematic, managed development and evolution of work products

are concerns, when requirements are likely to change, and when long-term commitment to

and investment in a business area is justi�ed by corporate objectives.

The most important conclusion we have drawn is that there is no single \best" domain analysis

approach. An organization should choose the one that best suits their software process needs,

existing software base, and business objectives. However, we have noted that the approaches of

Synthesis and Prieto-D��az are not incompatible, and we are working on creating a software process

that incorporates both at di�erent points in the process|Synthesis as a framework, Prieto-Diaz

where there is a need to organize an existing software repository in hopes of locating speci�c

components needed in the larger context. We are also continuing our e�orts by studying other

approaches to domain analysis. We hope to determine other di�erences that might inuence an

organization's decision on which approach to use, and to uncover any variations within a criterion.

In this way we shall gain a fuller understanding of the potential of domain analysis.

References

[Moor 89] Moore, John, and Sidney Bailin. The KAPTUR Environment: An Operations Concept.

CTA Incorporated, Rockville, Maryland. June 1989.

3

[Camp 90] Campbell, Grady Jr. Synthesis Reference Model. Software Productivity Consortium,

Herndon, Virginia. 1990.

[Jawo 90] Jaworski, Allan, Fred Hills, Tom Durek, Stuart Faulk, and John Ga�ney. A Domain

Analysis Process. Software Productivity Consortium, Herndon, Virginia. 1990.

[Kang 90] Kang, Kyo, Sholom Cohen, James Hess, William Novak, and Spencer Peterson. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Software Engineering Institute,

Carnegie-Mellon University, Pittsburgh, Pennsylvania. 1990.

[Luba 88] Lubars, Mitchell. Domain Analysis and Domain Engineering in IDeA. Microelectronics

and Computer Technology Corporation, Austin, Texas. September 1988.

[Diaz 87] Prieto-D��az, Rub�en. Domain Analysis for Reusability. Proc. COMPSAC'87. Tokyo,

Japan, pp. 23-29. October 1987.

4

Table 1: Criteria for Comparing Approaches

Method

FODA Jaworski Prieto-D��az Synthesis

De�nition of

\Domain"

Application area Business area Application area Business area

Determination of

Problems in the

Domain

Top-down Top-down Bottom-up Top-down

Speci�c Objectives

and Products of

Domain Analysis

Development of

canonical

architecture

Development of

domain

knowledge base

Learning more

about immature

domains,

discovering facts

about a domain

Products for

application

engineering

Permanence of

Domain Analysis

Results

Permanent Mutable Permanent Mutable

Relation to the

Software Development

Process

Pre-

requirements

Pre-

requirements,

waterfall model

Pre-

requirements

Meta-process

yielding

application

engineering

process

Focus of Analysis Decisions Objects and

operations

Objects and

operations

Decisions

Paradigm of Problem

Space Models

Decision model

and generic

requirements

Generic

requirements

Generic

requirements

Decision model

Purpose and Nature

of Domain Models

Speci�cation for

software

products

Repository of

domain

knowledge

Speci�cation for

software

products

Speci�cation for

software

process,

products,

environment

Organizational Model

of Domains and

Projects

Not speci�ed Projects are

components of a

domain

organization

Approach to Reuse Opportunistic Systematic Opportunistic Systematic

Focus of Formalization

E�ort

Formalizing

canonical

models

Formalizing

canonical

models

Formalizing

objects and

operations

Formalizing

canonical

models

Primary Product of

Domain Development

Reuse library Reuse library Reuse library Application

engineering

process

5

Steven Wartik received the Ph.D. degree in Electrical and Computer Engineering in 1984

from the University of California at Santa Barbara. From 1981 to 1984 he worked on software

development environments as part of TRW's Software Productivity Project. From 1984 to 1988 he

was an assistant professor of Computer Science at the University of Virginia, where his research

interests included software requirements and software con�guration management. From 1989 to the

present, he has been employed by the Software Productivity Consortium. He is currently part of

the Synthesis project, studying systematic reuse strategies.

Rub�en Prieto-D��az is Principal Member of Technical Sta� at the Software Productivity Con-

sortium. He recommends reuse strategies within SPC and consults with member companies on

establishing reuse programs. He was Princial Scientist at the Contel Technology Center responsible

for the technical direction of the Software Reuse Project. Previously he was the lead architect for

GTE's Asset Library System at GTE Laboratories.

Dr. Prieto-D��az's research interests are in software reusability with emphasis in library sys-

tems, classi�cation, retrieval, and domain analysis. He holds a B.S. in Aerospace Engineering from

St. Louis University, an M.S. in Engineering Design and Economic Evaluation and an M.S. in Elec-

trical Engineering, both from the University of Colorado at Boulder, and a Ph.D. in Computer

Science from the University of California at Irvine. He is a member of IEEE, IEEE-CS, and ACM.

6

