
An Outline for a Domain Speci�c Software

Architecture Engineering Process

Will Tracz

Lou Coglianese

IBM Corporation

Federal Sector Division

MD 0210

Owego, NY 13827-1298

Abstract

\In order to reuse software, there needs to be software to reuse."

One of the dilemmas that has prevented software developers from reusing software is the

lack of software artifacts to use or the existence of artifacts that are di�cult to integrate.

Domain Speci�c Software Architectures (DSSAs) have been proposed in order to address these

issues. A DSSA not only provides a framework for reusable software components to �t into,

but captures the design rationale and provides for a degree of adaptability. This paper presents

an outline for a Domain Speci�c Software Architecture engineering process.

Keywords: Domain Analysis, Domain Speci�c Software Architecture, Domain Engineering

1 Introduction

The purpose of this paper is to outline a process

1

currently under development, that can be used

to generate a Domain-Speci�c Software Architecture (DSSA). It is based on the work of Ruben

Prieto-Diaz[3] and Sholom Cohen[1]. The fundamental premises of this work are that:

1. an application can be de�ned by a set of needs that it ful�lls,

2. user needs can be mapped into a set of requirements that meet those needs,

3. requirements can be met in a number of ways,

4. implementation constraints limit the number of ways requirements can be met.

1

Note: a process is a series of steps or stages with entry and exit criteria and tasks to follow at each phase as well

as a way on verifying if what you are doing is any good.

1



The goal of the process is to map user needs into system and software requirements that, based

on a set of implementation constraints, de�ne a DSSA. The separation of user needs from system

requirements and implementation constraints di�erentiates this process from previous work. In

particular most domain analysis processes do not di�erentiate between functional requirements and

implementation constraints, but rather simply classify them under the heading of \requirements".

Similarly, this process di�erentiates between the System Architecture and the Software Architecture

that is part of it.

Another di�erence between this approach to domain engineering and other domain analysis ap-

proaches (e.g., Prieto-Diaz[2]) is that case-based reasoning and reverse engineering are not central

mechanisms for identifying reusable resources, but rather existing applications are used as vehicles

to validate the architectures that are derived, top-down, from generalized user requirements

2

.

At the top-most level there are 5 stages in the process. Each stage is further broken into sub-steps

or stages. Furthermore, this process is concurrent, recursive, and iterative, therefore completion

may require several passes through each stage with additional levels of detail being addressed, or

new insights (or oversights) requiring further de�nition or analysis. For example, during Stage 1:

De�ning/Scoping the Domain, one is concurrently identi�es key aspects of the domain, which

is part of Stage 2.2: De�ning a Domain Vocabulary.

The �ve stages in the DSSA De�nition Process are:

1. De�ne/Scope the Domain

� De�ne what can be accomplished | emphasis is on user's needs.

2. De�ne/Re�ne Domain Speci�c Concepts/Requirements

� Similar to Requirements Analysis | emphasis is on problem space.

3. De�ne/Re�ne Domain Speci�c Implementation Constraints

� Similar to Requirements Analysis | emphasis is on solution space.

4. Develop Domain Architectures/Models

� Similar to High-Level Design | emphasis is on de�ning module/model interfaces and

semantics.

5. Produce Reusable Workproducts

� Implementation of reusable artifacts (e.g., code, documentation, etc.).

The remaining material in this paper consist of a breakdown of the stages listed above. A

detailed description of each stage is found in[4], which is currently under development. Each stage

consists of a series of questions to be answered and a list of outputs to be generated.

2

The reuse of existing artifacts is not the central goal of the proposed Domain Engineering process, but rather

the development of a reusable architecture into which, well-speci�ed components can be integrated.

2



1.1 Domain Engineering Process Overview

The proposed Domain Engineering process consists of the following steps:

Stage 1 De�ne/Scope the Domain

Stage 1.1 De�ne goals of domain modeling.

Stage 1.2 De�ne the domain.

Stage 1.2.1 Identify what is inside the domain.

Stage 1.2.2 Identify what is outside the domain.

Stage 1.2.3 Identify what is on the borders of the domain (input/output).

Stage 1.3 De�ne Domain Speci�c Resources

Stage 1.3.1 De�ne who you have to work with.

Stage 1.3.2 De�ne what you have to work with.

Stage 1.3.3 De�ne how you will verify the models.

Stage 1.4 De�ne the domain of interest (subset of work that could be done).

Stage 2 De�ne/Re�ne Domain Speci�c Concepts/Entities/Requirements

Stage 2.1 De�ne a block diagram architecture (E/R Diagram).

Stage 2.1.1 Identify concepts/entities (behavior, temporal, and data) in the domain.

Stage 2.1.2 Identify attributes of concepts/entities.

Stage 2.1.2.1 Identify required/essential/mandatory concepts/entities.

Stage 2.1.2.2 Identify optional concepts/entities.

Stage 2.1.2.3 Identify alternative concepts/entities.

Stage 2.1.2.4 Identify requirements common from application to application

Stage 2.1.2.5 Identify requirements that vary from application to application.

Stage 2.1.3 Identify relationship between concepts/entities.

Stage 2.1.3.1 Identify \is a/a kind of" relationships between concepts.

Stage 2.1.3.2 Identify \consists of" relationships between concepts.

Stage 2.1.3.3 Identify \uses/needs" relationships between concepts.

Stage 2.1.4 Classify and cluster common concepts.

Stage 2.1.5 Record issues, trade-o�s, and rationale.

Stage 2.1.6 Create a Domain Description Document.

Stage 2.2 Create a Domain Vocabulary Dictionary.

Stage 2.2.1 Create a Domain Thesaurus (list of synonyms).

Stage 2.3 Create a High-Level Requirements Speci�cation document.

Stage 2.4 Re�ne concepts/entities already identi�ed to re
ect desired level of detail.

Stage 3 De�ne/Re�ne Domain Speci�c Implementation Constraints.

3



Stage 3.1 De�ne general implementation constraints on the architecture.

Stage 3.1.1 De�ne general software constraints (e.g., programming language, run-time

system, or Operating System)

Stage 3.1.2 De�ne general hardware/physical constraints (e.g., platform, sensors, or

appearance).

Stage 3.1.3 De�ne general performance constraints (e.g., response time, accuracy).

Stage 3.1.4 De�ne general mission constraints (e.g., fault tolerance, security, or safety).

Stage 3.2 Identify relationships between concepts and constraints.

Stage 4 Develop Domain Architectures/Models.

Stage 4.1 De�ne a Domain Speci�c Software Architecture or Architectures.

Stage 4.1.1 De�ne a decision taxonomy for requirements and constraints for each ar-

chitecture.

Stage 4.1.2 Record design issues, trade-o�s, and decision rationale.

Stage 4.2 Specify interfaces for each module (operations and operands).

Stage 4.2.1 Specify semantics of each module (behavior).

Stage 4.2.2 Specify constraints on each module (e.g., entry/exit criteria).

Stage 4.2.2.1 Specify performance/timing constraints.

Stage 4.2.2.2 Specify dependency (layering) constraints.

Stage 4.2.2.3 Specify sequentiality/order (operational) constraints.

Stage 4.2.2.4 Specify mission constraints.

Stage 4.2.3 Specify performance characteristics of each model.

Stage 4.2.4 Identify con�guration (generic) parameters for each model.

Stage 4.2.5 Record issues, trade-o�s and design rationale.

Stage 4.3 Link models to concepts and requirements.

Stage 4.4 Re�ne a Domain Speci�c Software Architecture or Architectures to re
ect desired

level of detail.

Stage 5 Produce Reusable Workproducts.

Stage 5.1 Develop the reusable artifacts (e.g., code, documentation, test cases, etc.)

Stage 5.1.1 Determine parameterization/con�gurability level desired.

Stage 5.1.2 Implement each module.

Stage 5.1.3 Test each module.

Stage 5.1.4 Document each module.

Stage 5.1.5 Record issues, trade-o�s and design rationale.

Stage 5.2 Link artifacts to models, concepts, and requirements.

Stage 5.3 Link documentation to models, concepts, and requirements.

4



References

[1] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineer-

ing Institute, November 1990.

[2] R. Prieto-Diaz. Domain Analysis for Reusability. In Proceedings of COMPSAC 87, 1987.

[3] R. Prieto-Diaz. Reuse Library Process Model. Technical Report AD-B157091, IBM CDRL

03041-002, STARS, July 1991.

[4] W. Tracz and L. Coglianese. Domain Engineering Process Guidelines. Technical Report TBD,

IBM Federal Sector Division, In Progress 1991.

About the Authors

Will Tracz

Will Tracz is a senior programmer at the Owego Laboratory of the IBM Federal Sector Division

specializing in the technical and non-technical aspects of software reusability. He is a member of

IBM Corporate Reuse Council and IBM FSD Reuse Steering Committee as well as an editor for the

IBM Corporate Programming Reuse Newsletter. Tracz has written over 25 publications on software

reuse, programming languages, and microprogramming. He has given keynote addresses as several

workshops and conferences on software reuse. His book, Software Reuse: Emerging Technology,

published by IEEE Computer Society Press, 1988, paints a broad picture of the technical, economic,

pedagogical and social issues facing the transfer of software reuse technology into the work place.

Currently, Tracz is co-principle investigator for the DARPA Domain Speci�c Software Architecture

project focusing on the Avionics application domain.

Lou Coglianese

Lou Coglianese is a senior programmer at the Owego Laboratory of the IBM Federal Sector Di-

vision specializing in large-scale software reuse as it applies to Avionics and ESM real-time software

development. He was the designer and developer of the Reusable Avionics Ada Software Proof-of-

concept program as well as the developer of Owego Software Component Guidelines for Domain

Analysis and Large Scale Reusable Software. Coglianese is the former chair of the Owego Reusable

Software Advisory Board. Currently he is co-principle investigator for the DARPA Domain Speci�c

Software Architecture project focusing on the Avionics application domain.

5


