
Inheritance for Software Reuse: The Good, The Bad,

and The Ugly

Murali Sitaraman and David Eichmann

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

(murali, eichmann)@cs.wvu.wvnet.edu

Abstract

Inheritance is a powerful mechanism supported by object-oriented programming languages

to facilitate modi�cations and extensions of reusable software components. This paper presents

a taxonomy of the various purposes for which an inheritance mechanism can be used. While

some uses of inheritance signi�cantly enhance software reuse, some others are not as useful and

in fact, may even be detrimental to reuse. The paper discusses several examples, and argues

for a programming language design that is selective in its support for inheritance.

Keywords: extensions, implementation, inheritance, reusable software components, speci�-

cation

1 Introduction

Inheritance has been widely recognized as an important mechanism for constructing new reusable

software components from existing components [Liskov 87, Meyer 88]. This paper proposes a tax-

onomy for inheritance-based reuse. Some members of this taxonomy permit e�ective reuse and

must be supported by object-oriented programming languages. However, there are other uses of

inheritance that do not enhance reuse, and may even be detrimental to reuse. A language must,

therefore, be selective in its support for inheritance.

2 A Framework for Discussion

We will use the \3C reference model" (for reusable software components) as the basis for our

taxonomy in this paper [Edwards 90, Latour 90, Tracz 90b]. This model is the result of the discus-

sions at the Reuse in Practice Workshop (July 1989) and the Workshop on Methods and Tools for

1

Reuse (June 1990). The 3C model associates three key ideas with reusable software components as

summarized in [Weide 91]:

Concept An abstract (formal) speci�cation explaining (precisely) what functionality is provided

by a software piece, without saying how the functionality can be realized.

Content (for a concept) A piece of code that (precisely) describes the data structures and algo-

rithms for implementing (in a formal, programming language) the concept.

Context A statement (precisely) explaining the environment (using formal notations) in which a

concept or content is presented.

Several contents may implement the same concept. They will all be identical with respect to

their functionality, but may be di�erent with respect to their performance behaviors (e.g., space

or time characteristics) To use a component, a client (user) needs to understand only its con-

cept. The functional correctness of the client program depends only on this concept [Parnas 72].

The client will remain una�ected even if it switches from one content of the concept to another.

These observations have important implications for modi�cation and maintenance of software built

from reusable components. We have used a similar model in our research to characterize the

nature of a components industry that would evolve when current reuse e�orts prove successful

[Muralidharan 90b, Sitaraman 90, Weide 91].

3 A Classi�cation of Uses of Inheritance

Inheritance can be used, in the above framework, to extend (or modify), and thus, reuse each aspect

of a software component - concept, content, and context. This section presents a classi�cation of

such uses of inheritance. We restrict our attention in this paper to inheritance of concepts and

contents alone. It is important to note that our classi�cation has nothing to do with the actual

inheritance mechanisms supported in object-oriented languages; it deals only with the possible uses

of inheritance.

3.1 A Classi�cation Scheme

The critical issues in inheritance mechanisms from a reuse perspective are who inherits, what is

inherited, and what can be done with that which is inherited. We consider each of these issues in

turn. This discussion supports both single and multiple inheritance.

(i) Who inherits and from whom

Speci�cation inheritance occurs when parents are concepts. Implementation inheritance occurs

when parents are contents. These de�nitions are similar in spirit to those found in [LaLonde 89].

The heir can be either a concept or a content for either speci�cation or implementation inheritance.

The only combination that is not meaningful (based on our de�nitions) is inheritance of a content

by a concept.

(ii) What parts are inherited

2

We focus our attention here only on formally de�ned concepts and contents that implement

these concepts. A formal concept for a data abstraction has two parts: the abstract model(s) that

describes the type(s) provided by the concept, and the abstract speci�cations of the operations on

the provided type(s). (When a concept provides only a procedural abstraction, only the second

part is present.) The appendix describes an example concept - a formal speci�cation of a stack data

abstraction.

A content for a concept de�ning a data abstraction also has two parts: the representation(s) of

the provided type(s), and the code for the provided operations.

An heir may selectively inherit only parts of a concept or content.

(iii) The mode of inheritance

An heir may inherit parts of a concept or a content for read only or for rede�ning purposes.

When a heir rede�nes a part of its parent, the re-de�nition may or may not be \compatible" with its

parent. The de�nition of compatibility depends on what is inherited; usually it involves restricting

the domain of one or more inherited types.

3.2 Speci�cation Inheritance - Inheritance of a Concept

A concept can be inherited by either another concept or by a content. (When multiple concepts

are inherited, di�erent concepts could be a�ected di�erently.)

3.2.1 Inheritance by a concept

First, we de�ne what it means for an heir to compatibly rede�ne its parent's parts. The abstract

model A of an heir is compatible with the corresponding model B of its parent, only if the parent

concept is una�ected by substituting A for B. (For, example, the heir's model should satisfy the

invariants in the parent concept.) An operation P in an heir is compatible with the corresponding

operation Q in its parent, only if P's pre-condition is no stronger than Q's and P's post-condition

is no weaker than Q's.

Because few object-oriented programming languages have included rigorous formal speci�ca-

tions, the issues raised by some of these combinations have not been explored in the community.

In table 1, the meaningful combinations are marked with a �. For want of space, we discuss the

meaning and relevance of only some of these combinations here.

(i) Read only - both abstract model(s) and operations

Table 1: Inheritance a concept by another concept

Mode None Model Operations Both

Read only �

Read and compatible redefine � �

Read and incompatible redefine � � �

3

This is probably the most common mode for speci�cation-based extensions. For example, a basic

stack concept may provide the operations push, pop, and is-empty. This concept may be extended

to include, say, an operation to reverse a stack. The typical reason for extending a concept is either

that the original concept is not su�ciently complete or that it is in the developmental stage. In

[Sitaraman 91], we have argued for a reason to extend even well-designed concepts for building

e�cient implementations. Without the ability to inherit a concept, this is impossible to do. This

use of inheritance can enhance reuse and programming languages must support this possibility.

(ii) Read all and compatibly rede�ne - operations

Sometimes, it may be essential to create a new concept by modifying the speci�cations of an

existing concept. If the changes are compatible (according to the de�nitions of compatibility in this

section) with the speci�cations in the original concept, then the new concept can be used wherever

the original concept was being used. For example, a stack concept can inherit from a bounded stack

concept, and relax the pre-condition on the push operation. Intuitively, an unbounded stack can

be used wherever a bounded stack can be used.

(iii) Read all and incompatibly rede�ne - operations

If a stack concept is already de�ned, and someone extends it to be a bounded stack, this will be

the case. In this case, the model of the stack has to be extended to include a bound. In addition,

while the original stack will have no pre-condition for the push operation, the heir concept will have

one. This is incompatible because the heir has a stronger pre-condition. Intuitively, a bounded

stack cannot be used where an unbounded stack was previously used. If the abstract model of a

type is rede�ned, the speci�cations of most, if not all, operations will have to be rede�ned. In this

case, inheritance may result in some, but not in signi�cant reuse.

3.2.2 Inheritance by a content

When a concept is inherited by a content, only few combinations are meaningful.

(i) Read only - both abstract model(s) and operations

This is the most normal case of concept inheritance by content. To implement a concept, a

content must inherit it for read only purposes. Of course, more than one content may inherit

the same concept in this mode, resulting in multiple implementations of a concept. This is an

important use of inheritance [Meyer 88, Sitaraman 90], and is crucial for the evolution of a successful

components industry.

Table 2: Inheritance of a concept by a content

Mode None Model Operations Both

Read only �

Read and compatible redefine �

Read and incompatible redefine �

4

(ii) Read all and compatibly rede�ne - operations

Sometimes, an implementation of an operation may require fewer pre-conditions than stated in

its speci�cations and ensure more post-conditions. In this case, the operation does more than what

the speci�cation of the operation needs it to do. For example, an operation may reclaim unused

storage even if it is not explicitly stated in its speci�cation.

(iii) Read all and incompatibly rede�ne - operations

This is an implementation where the code for some operations do not provide the behavior

speci�ed in the concept. In otherwords, this content does not correctly implement its concept, i.e.,

it is incorrect. Clearly, this is a bad use of inheritance.

3.3 Implementation Inheritance - Inheritance of a Content

A content can be inherited only by another content. The concept of the parent and the heir may

or may not be the same. Just as in the case of a concept, a content may be inherited in three

di�erent modes. A content rede�nes a representation compatibly only if the heir's representation

when used in the place of the parent's representation leaves the parent content una�ected. A

compatible rede�nition of an operation does not violate the speci�cation of the operation in the

parent content's concept. Content inheritance may also be selective. (When multiple contents are

inherited, di�erent contents could be a�ected di�erently.)

(i) Read only - both representation(s) and operations

Apparently, this use of content inheritance is to permit an heir take advantage of the otherwise

hidden details of another content. For a well-designed component, providing \su�ciently complete"

functionality, all essential details of the content may be accessed by calling the operations in its

concept. This use of inheritance helps in avoid a few procedure calls, but clearly violates the

principle of information hiding. This can lead to serious pitfalls, including poor developmental

independence and maintainability [Muralidharan 90a, Raj 90]. This may, however, be a useful way

of keeping track of di�erent versions of the same content.

(ii) Read all and compatibly rede�ne - operations

This case of content inheritance probably is most useful to keep track of the di�erent versions

of an evolving content.

(iii) Read all and compatibly rede�ne - both rep. and operations

Table 3: Inheritance of a content by a content

Mode None Rep: Operations Both

Read only � �

Read and compatible redefine � � � �

Read and incompatible redefine � � �

5

Sometimes, when a new concept is created by compatibly rede�ning an existing concept, it may

be possible to create a content for the new concept by compatibly rede�ning a content of the original

concept. The new content, in this case, will also be a content for the original concept.

Incompatible rede�nitions may be useful in some rare cases. It must be noted, however, that

all uses of content inheritance su�er from certain basic problems because their violate information

hiding.

4 Discussion

Object-oriented programming languages typically support one mechanism for inheritance that is

useful for various purposes. While this is important, we believe the mechanism should be discrim-

inatory and allow only certain uses. We have shown that most uses of speci�cation inheritance

are useful and some uses of implementation inheritance may not be desirable. The components of

a library that would evolve from discriminatory uses of inheritance will facilitate construction of

software systems that are reliable, modi�able, and maintainable.

The work presented here can be formalized, and extended to compare inheritance mechanisms in

various languages and the forms of uses that are supported. Also, it is important to identify inter-

esting examples for the various classes, thereby leading to a better understanding of the usefulness

of these classes. The present scheme should also be enhanced to account for context inheritance.

References

[Edwards 90] Edwards, S., \The 3C Model of Reusable Software Components," Third Annual

Workshop: Methods and Tools for Reuse, Syracuse, 1990.

[LaLonde 89] LaLonde, W. R., \Designing Families of Data Types Using Exemplars," ACM

Transactions on Programming Languages and Systems 11, 2, April 1989, pp.

212-248.

[Latour 90] Latour, L., T. Wheeler, and W. Frakes, \Descriptive and Predictive Aspects

of the 3Cs Model: SETA1 working group summary," Third Annual Workshop:

Methods and Tools for Reuse, Syracuse, 1990.

[Liskov 87] Liskov, B., \Data Abstraction and Hierarchy,"Addendum to the Procs. of OOP-

SLA 1987, Orlando, FL, pp. 17-34.

[Meyer 88] Meyer, B., Object-Oriented Software Construction, Prentice-Hall, Englewood

Cli�s, NJ, 1988.

[Muralidharan 90a] Muralidharan, S., and B. W. Weide, \Should Data Abstraction Be Violated to

Enhance Software Reuse?," Proc. 8th Annual National Conf. on Ada Technol-

ogy, ANCOST, Inc., Atlanta, GA, Mar. 1990, 515-524.

6

[Muralidharan 90b] Muralidharan, S., and B. W. Weide, \Reusable Software Components = For-

mal Speci�cations + Object Code: Some Implications," 3rd Annual Workshop:

Methods and Tools for Reuse, Syracuse Univ. CASE Center, Syracuse, NY,

July 1990.

[Parnas 72] Parnas, D. L., \On the Criteria to be Used in Decomposing Systems into Mod-

ules," Communications of the ACM 15, 12, December 1972, 1053-1058.

[Raj 90] Raj, R. K., \Code Inheritance Considered Harmful," 3rd Annual Workshop:

Methods and Tools for Reuse, Syracuse Univ. CASE Center, Syracuse, NY,

July 1990.

[Sitaraman 91] Sitaraman, M. and D. Eichmann, Building and Using E�cient Extensions:

An Approach Based on Inheritance, TR 91-01-02, Dept. of Stat. and Comp.

Science, West Virginia University, Morgantown, WV 26506.

[Sitaraman 90] Sitaraman, M., Mechanisms and Methods for Performance Tuning of Reusable

Software Components, Ph. D. Dissertation, Dept. of Comp. and Info. Science,

Ohio State Univ., Columbus, OH, July 1990.

[Tracz 90a] Tracz, W., \Where Does Reuse Start?," ACM SIGSOFT Software Engineering

Notes 15, 2, pp. 42-46.

[Tracz 90b] Tracz, W., \The Three Cons of Software Reuse," Third Annual Workshop:

Methods and Tools for Reuse, Syracuse, 1990.

[Weide 91] Weide, B. W., W. Ogden, and S. H. Zweben, \Reusable Software Components,"

Advances in Computers, M. C. Yovits, eds., Academic Press, New York, NY,

1991.

[Weide 86] Weide, B. W., Design and Speci�cation of Abstract Data Types Using OWL,

OSU- CISRC-TR-86-01, Dept. of Comp. and Info. Science, Ohio State Univ.,

Columbus, OH, March 1986.

[Wing 90] Wing, J. M., \A Speci�er's Introduction to Formal Methods," IEEE Computer

23, 9, September 1990, pp. 8-24.

5 Appendix: An Example Concept

Figure 1 shows a concept for a Stack component explained using a model-based speci�cation. For

our purposes, it does not matter which speci�c speci�cation language and/or programming language

is used in explaining concepts and contents. The concepts could use any of the formal methods

described in [Wing 90]. We have chosen a dialect of RESOLVE [Weide 91].

Here, the type Stack is modeled as a mathematical STRING of Items and the operations are

formally speci�ed using mathematical string functions EMPTY and POST. Each operation has

been explained using two clauses: a requires clause that states what must be true of the arguments

7

concept Stack_Template (type Item)

type Stack is modeled by STRING (Item)

initially for all s: Stack, s = EMPTY

operation Push(s: Stack, x: Item)

ensures s = POST(s, x) and Item.Init (x)

operation Pop(s: Stack, x: Item)

requires s /= EMPTY

ensures #s = POST (s, x)

operation Is_Empty(s: Stack) return Boolean

ensures Is_Empty iff s = EMPTY

end Stack_Template

Figure 1: Formal Speci�cation of a Stack Abstraction

passed to the operation and an ensures clause that states what will be true of the parameters at the

completion of the operation. In the ensures clause, the notation \#x" for a parameter x denotes its

incoming value and RxS denotes its value when the operation returns. (In the requires clause, the

variables always denote the incoming values.) The speci�cation of Push, for example, states that

the value of the returned stack (s) is its incoming value (#s) with the incoming value of x (#x)

appended to the end. The returned value of x is an initial value of the type Item.

6 About the Authors

Murali Sitaraman is an Assistant Professor of Computer Science at the West Virginia University. He

holds a Ph. D. in Computer Science from The Ohio State University and M. E. (distinction) from

the Indian Institute of Science. His current research interests are in data structures and algorithms,

programming languages, software reuse, veri�cation and validation, and some aspects of distributed

computing. His Internet address is murali@cs.wvu.wvnet.edu.

David Eichmann is currently an Assistant Professor of Computer Science at West Virginia

University and heads the Software Reuse Repository Lab (SoRReL). He received his doctorate

in computer science from The University of Iowa, and taught in Seattle University's Master's in

Software Engineering Program before joining WVU. His research interests focus on software reuse

systems, particularly in the representation and retrieval of life cycle artifacts, and on database

systems, particularly in type systems for databases. SoRReL is currently supported in part by

NASA's RBSE project (previously known as AdaNet).

8

