
Software Reuse in the USC System Factory Project

Walt Scacchi

Decision Systems Dept.

University of Southern California

Los Angeles, CA 90089-1421

Scacchi@pollux.usc.edu

Abstract

In this note, I brie
y review and describe some of the principal techniques and mechanisms

for software reuse that we have used within the USC System Factory Project. I �rst review

our techniques for software reuse that include domain analysis and modeling, formal develop-

ment methods, reverse software engineering, module interconnection formalisms, and software

process reuse. I then follow with a similar review of the computational mechanisms we use to

support reuse including object repositories, software generators, process-based environments,

software con�guration tools, and extensible systems.

Keywords: Domain analysis and modeling, formal development methods, reverse software

engineering, module interconnection formalisms, process reuse, software reuse mechanisms

1 Introduction

In order to help convey an idea of our past and present e�orts in software reuse in the USC System

Factory Project, I have prepared this working paper. However, I do want to point out that software

reuse, per se, has not been a distinct research topic for us in the SF Project. Instead, we think of

software reuse as a basic strategy for improving our software development productivity. Thus, we

seek to make frequent and widespread application of software reuse techniques and mechanisms in

our R&D activities.

First, I will identify the categories of software reuse techniques and mechanisms that are rele-

vant, then follow with a brief description of our e�orts within each. Then, I will brie
y describe

some strategies for organizing software reuse activities. Overall, we have a number of research

publications, available from the author, that provide more detailed descriptions of our e�orts than

appropriate here.

1



2 Software Reuse Techniques

What follows is an unordered set of techniques for software reuse that have been employedwithin the

SF project. The notion of "technique" here implies an activity performed by one or more persons

that may or may not use a systematic notation to describe or enact a software reuse strategy.

Techniques appear in contrast to "mechanisms", described later, which refer to computational

tools, executable processes, or other operational software artifacts that might support some reuse

technique.

The reuse techniques of interest to us include domain analysis and modeling, formal development

methods, reverse software engineering, module interconnection formalisms, and software process

reuse.

2.1 Domain Analysis and Modeling

A few years ago, I undertook an e�ort to survey and categorize the various families of software

systems available in the commercial and academic marketplace. I found twenty di�erent application

families covered the few thousand software o�erings then available. In turn, I then had teams of

graduate students conduct a systematic analysis of the operational requirements of the software

systems that typi�ed each family. I also had these students conduct a literature review of some 250

articles that covered software applications in each of the 20 families. From this analysis, I identi�ed

a small set of domain-independent software subsystems (e.g., user interface management systems,

structured storage servers, etc.) that were common to two or more families. Now while this set of

software subsystem components is now fairly obvious, it became clear that it was also possible that

unexplored software applications (ie, potentially innovative applications) could be derived by mixing

and matching components from di�erent application families. For example, a data visualization

and animation subsystem might be combined with a corporate order-entry, dispersements, and

payroll software components as a skeletal framework for visualizing corporate cash 
ow patterns

and dynamics. Of course, the signi�cance (or lack thereof) for these new application systems is in

the eye of the beholder (or customer). Nonetheless, this domain analysis of software application

families did help to reveal which large-scale software components could be targeted for reuse in

di�erent application domains [Scac 89]. Also, it helped to reveal that development environments

for software application families should provide easy access to rapid composibility of subsystems to

support more rapid application development or prototyping.

2.2 Formal Development Methods

Actually, one purpose of the preceding domain analysis of software product families was to try

to derive a set of formal speci�cation (in the Gist speci�cation language from USC-ISI) for the

common software subsystems [Cast 86]. This e�ort provide to be demanding and time-consuming.

Furthermore, we lacked a formal speci�cation language support environment. Thus, the use of for-

mal development techniques such as operational speci�cation languages to specify common software

subsystem components remains an underexplored reuse technique for us.

Nonetheless, we have investigated reuse opportunities for formal speci�cations. For example,

in one experiment, we provided a set of development teams (5-7 graduate students in each) with

2



access to a hypertext-based catalog of formal speci�cations [Bendi 89]. The teams were given a

problem statement to develop and deliver a formal speci�cation (in Gist) and informal narrative

speci�cation within a two week period for a software system they were then to design, implement,

and test. The speci�ed systems were then implemented, and the resulting C source code varied in

size from 3000 to 12000 lines of code. Thus, we considered the delivered speci�cations to be more

than toy or textbook level problems.

We recorded the time each team spent producing their speci�cation, the number of automatically

detected errors in the delivered formal speci�cation, and whether they used speci�cation fragments

available in the hypertext catalog [Garg 90]. Admittedly these are crude (but acceptable) measures

of productivity, quality, and reuse. To our surprise, reuse of formal speci�cation, per se, was not

signi�cantly associated with productivity or quality variations. Instead, we found that intra-team

dynamics accounted for the most variance observed in productivity and quality. While these results

are only suggestive, not de�nitive, they did begin to dissuade us from further studies of the reuse of

formal speci�cations as a productivity or quality enhancement strategy. However, we do still believe

that formal speci�cation do contribute to improved understanding of the software applications by

their developers.

2.3 Reverse Software Engineering

As part of our work in software engineering environments, we got interested in reverse software

engineering (RSE) and software system re-engineering. Our focus was aimed at (a) extracting,

visualizing, and restructuring architectural design representations from source code, and (b) transi-

tioning legacy code into forms compatible with advanced software engineering environments (such

as those incorporating con�guration management services). A couple of companion papers describe

these e�orts and associated environment mechanisms in more detail [Choi 90, Choi 91].

From a reuse perspective, one reason to investigate RSE techniques is to determine to what

extent extracted architectural designs reveal software reusability information. Consider the follow-

ing: Assume that an extracted architectural design of a software application can be represented by

a directed-acyclic graph, with nodes corresponding to application modules, and edges as module

interconnections for resource exchange. Then we might, for example, seek to identify modules with

high interconnectivity as candidates for reusable components. This makes more sense when many

applications have their architecture extracted and logical subsystems compared. Alternatively, if

we must build new generation replacement systems for older less maintainable systems, then re-

covered design information might serve as a guide for more rapidly analyzing and prototyping the

new replacement system. However, when moving to new source code language paradigms (e.g.,

from imperative to object-oriented) this technique may not be as useful. Instead, we may need

to develop application-speci�c RSE tools which produce a neutral, intermediate representation for

possible reuse. We have proposed to develop such tools to some of our research sponsors to aid

their proposed redevelopment of large programs in \old" programming languages into Ada.

2.4 Module Interconnection Formalisms

There is now growing interest within the software research community focussed on the rapid com-

position of reusable, large-grain software components/subsystems into large systems. Techniques

3



now called "megaprogramming" by some are representative of this interest. Basically, the idea is

that there should exist a separate notation, language, or some other formalism for describing the

interfaces and interconnection portals for large components that can con�gured into operational

systems with modest e�ort.

Our work in this area is an outgrowth of our prior studies in developing and applying mod-

ule interconnection language (MIL) concepts and mechanisms to support the evolution of con�g-

ured software life cycle descriptions (ie, life cycle components, not just source code components)

[Choi 89, Garg 88, Nara 87a, Nara 85, Nara 87b]. In 1985, we developed the NuMIL language for

specifying how families of multi-version source code modules can be interconnected into subsystem

families through well-de�ned resource exchange interfaces. The NuMIL notation was then adapted

for use in any software description notation, formal or informal, and supported by the SOFTMAN

environment since 1989 [Choi 89, Choi 90, Choi 91]. This environment in turn supports the in-

cremental development, veri�cation and validation, and quality assurance of software applications

throughout their life cycle. We are currently restructuring SOFTMAN so as to incorporate a pro-

grammable life cycle process interface.

The NuMIL notation was also at the same time adapted to serve as a data and tool integration

language for use in the DIF hypertext environment [Garg 90]. DIFCon�g, as well now call it, serves

as a domain-independent hypertext environment shell into which we can inegrate existing software

tools or applications from other domains in order to rapidly create domain-speci�c hypertext en-

vironments (DSHE) [Scac 89]. These DSHE also provide hypertext and data management services

to the integrated applications. We have used DIFCon�g to develop DSHE for journal publication,

computer-aided design (CAD/CAM), medical clinic information systems, payroll and personnel,

and computer music composition applications. If one were to measure the volume of source code

assembled in these DIFCon�g-based environments, the measures run in the range of 50K SLOC to

250K SLOC. Further, these application environments were developed by domain specialists unfa-

miliar with our mechanisms, but who averaged about 120 hours of total development e�ort from

start to sign-o�.

We are currently redoing the backend to DIFCon�g to utilize a newly developed distributed

hypertext (DHT) service layer which will provide hypertext navigation and integration capabilities

to applications, tools, or data distributed over local/wide-area network of heterogeneous informa-

tion repositories [Noll 91]. The DHT service is also being added to the restructured SOFTMAN

environment noted above.

2.5 Process Reuse

We have come to recognize that most of the attention directed at software reuse is directed to reuse

of executable software products. However, we observe that if our interest is to improve productivity

or to reduce the time to get new products out the door, we can also focus attention to improving

and optimizing software production processes. However, until recently, software processes were

informal, too abstract, and lacking any operational representation. Times have changed.

In order to improve and optimize software production processes, they must be observable, re-

peatable, measurable, enactable, and recon�gurable. In short, software processes should be reusable

in order to be improvable and optimizable.

4



We are now developing and experimenting with formal languages and graphic notations for spec-

ifying operational software process models. These process models in turn can be used to integrate

and "drive" software development environments, such as SOFTMAN noted earlier. We have devel-

oped a number of associated mechanisms for modeling, simulating, con�guring, repairing, querying,

and replaying software process speci�cations [Mi 90, Scac 91, Scac 86]. As we develop larger number

of software process speci�cations, we will need to also develop techniques and mechanisms for in-

dexing process speci�cations as well. Last, we should also note that process speci�cation techniques

and mechanismsmay be applied to domains other than software production, such as manufacturing,

technology transition, training, and others [Scac 89].

3 Software Reuse Mechanisms

The following is an unordered set of computational mechanisms for software reuse that have been

employed or mentioned by various researchers:

3.1 Object Repositories and Catalog Servers

Most of the software reuse techniques described above implicitly expect the availability of some

sort of software component or artifact repository. We have experimented with various hypertext

mechanisms as a way to catalog, browse, query, and access various reusable software entities. At

present, our attention is directed to construction of a distributed hypertext service layer (noted

above) that will enable autonomous, distributed heterogeneous repostories to be integrated and

accessible through a common hypertext-based communication protocol [Noll 91]. Thus, this service

layer might enable various repositories of software entities on a wide-area network to be accessed,

browsed, and so forth as if they were part of a global or corporate-wide repository.

On the other hand, there are still some substantial problems that current repositories and

catalog servers do not address very well. These problems include (a) naming reusable entities with

semantically meaningful names or part numbers; (b) discovering whether there exists a reusable

entity that satis�es some request, speci�cation, or semantic signature; and (c) determining which

repository to search for certain types of reusable entities. At this time, we are investigating part

naming techniques developed for use in group technology as a way to address (a). For (b) and (c),

we think that "intelligent gateways" or "distributed search agents" may be needed as extensions to

the DHT service layer. But these are still preliminary hypotheses.

3.2 Software Generators

Software generators, as the name suggests, are programs that produce other programs. In this

regard, software generators are a kind of "meta-reusable" software component, since the programs

they produce might themselves be treated as reusable components. The most common example of

software generators are parser and lexical analyzer generators. Of course, other kinds of generators

have been produced including code generator generators, full compiler generators, report genera-

tors, and various application generators. We have developed language-directed editor generators,

5



user interface generators, formal speci�cation (Gist) generators, and spreadsheet application gen-

erators [Cast 86]. As these generators all produce operational stand-alone programs in the range

of a 1K-25K+ lines of code, such programs become more interesting when they can be generated

as complete subsystems that can be rapidly composed or integrated into larger systems or environ-

ments. We have some experience with this in the SOFTMAN environment where we can generate

language-directed editors for new languages that are easy to integrate into an existing or new SOFT-

MAN environment instance. We have also investigated other meta-tools and generators of software

development environments as well [Karr 91].

However, we are also interested in exploring the idea of cascading di�erent software generators

together, so that the output of one generator becomes the input to one or more other generators.

For example, when we built a spreadsheet application generator a few years ago, its input speci�-

cation language was a subset of the Gist language. The generator in turn transformed the input

speci�cation into a working program approximately 10 times the size of the input speci�cation (as

measured by number of statements{admittedly a crude measure). We also developed a Gist genera-

tor that accepted a structured, form-based informal language as input, that in turn paraphrased the

input into a di�erent Gist subset. In this case, the output-input ratio was roughly 3-1. Finally, in

a systematic study of the speci�cation and implementation of a dozen software systems using Gist

and C, we observed a C-Gist ratio of between 25-1 and 30-1. Thus, the hypothesis I then derived

was that if we could restructure the Gist speci�cation subsets used by the two generators, it might

therefore be possible to connect (or cascade) the speci�cation generator to the spreadsheet applica-

tion generator, then expansion ratios of 30-1 or more might be possible. Further, if the Gist subsets

could be expanded to the full Gist language, and another intermediate generator added to handle

the additional constructs, then it might be possible to demonstrate a software generator cascade

that could produce programs with an expansion ratio of 100-1 or more. However, the students who

were working with me on this project graduated and took industrial positions before the project

was completed. Thus, I think of domain-speci�c cascaded software generators as still a promising

mechanism for research.

3.3 Process-Based Environments and Interfaces

We think that the reuse of software processes is emerging as an important technique for software

production. Accordingly, we have development a number of mechanisms for exploring the value of

this technique. Speci�cally, we have developed a knowledge-based environment for modeling and

simulating complex software engineering processes [Mi 90]. The processes of greatest interest to us

are those that involve multiple development agents acting in multiple, sometimes overlapping roles,

who are assigned to perform a web of interrelated tasks with limited resources. Our environment,

called the Articulator, has been used to model and analyze software development processes in

practice by some of our industrial sponsors, as well as those which we practice in the SF Project. We

have fund these software process models can be used for planning, training or guiding, monitoring,

and improving software production processes. Further, through knowledge-based simulation and

query interfaces, we can symbolically execute modeled processes, both forward and backward. Thus,

we can con�gure a process model, simulate its development progress, stop and reply it, back it up

to some prior state, recon�gure the state then continue on a new path of progress.

In addition, we have also developed what we call a process-based user interface (PBI) for software

6



development environments [Peiw 91]. With PBI, we can use a process model constructed with the

Articulator to con�gure the development environment to directly support the process. That is,

PBI adds a capability to add "process integration" to development environments or environment

frameworks (e.g., HP Softbench) that provide data and/or control integration mechanisms. We are

currently developing a PBI for the SOFTMAN environment which also incorporates or supports

the other software reuse mechanisms described in this memo.

3.4 Software Con�guration Tools

As noted in the discussion of module interconnection formalisms, we have developed a small num-

ber of software con�guration mechanisms. DIFCon�g is a primary example of such a mechanism

that supports the development of hypertext-based application environments that can integrate

large-grain software components. Our experience with DIFCon�g has been very promising to date.

However, the current DIFCon�g implementation, based on the original DIF hypertext backplane,

lacks capabilities we now consider desirable. Thus, we are currently directing e�ort to extend-

ing DIFCon�g to support the DHT service layer, as well as to incorporate other software reuse

mechanisms described in this section.

3.5 Extensible Software Systems

Objects within a class hierarchy, subclass specialization, polymorphism and inheritance are all

elements of extensibility available in most object-oriented program development systems. Software

development tools that support extensibility directly may therefore be appropriate as part of a

reusable software environment. We have developed an extensible tree/graph editor (TGE) as an

example of such a tool [Karr 90]. With TGE, it is possible to construct domain-speci�c tree or graph

editors. The resulting editors are developed by specializing the classes of objects and functions

provided in the base tree or graph editors. This development technique has the advantage of

that the the target editor is incrementally built from an already operational editor. This in turns

means that the emerging target editor is always operational throughout the development process.

This ability to execute and try out an emerging editor during development of course provides an

excellent source of feedback during early prototyping stages. With our TGE, we have developed

about a dozen tree/graph editor applications which we have been able to readily integrate into a

variety of application environments, including SOFTMAN. Thus, extensible systems such as TGE

provide capabilities similar in ways to those of software generators.

4 Summary

In this note, I have brie
y described some of the major techniques and mechanisms for software

reuse that we use as a regular part of our research and development activities. Although software

reuse has not been an explicit research focus for us in the System Factory project, we believe

that it will increasingly become part of normal development practices, at least within the research

community.

7



5 Acknowledgements

Work describe in this report is part of The USC System Factory project. This work was supported

through contracts and grants with ATT Bell Laboratories, Northrop Corporation, O�ce of Naval

Technology through the Naval Ocean Systems Center, and Paci�c Bell.

References

[Bendi 89] Bendifallah, S. and W. Scacchi. \Work Structures and Shifts: An Empirical Analysis

of Software Speci�cation Teamwork." Proc. 11th. Intern. Conf. Software Engineering,

ACM, 1989, pp. 260-270.

[Cast 86] Castillo, A., S. Corcoran, and W. Scacchi.\A Unix-based Gist Speci�cation Processor:

The System Factory Experience." Proc. 2nd. Intern. Conf. Data Engineering, 1986, pp.

582-589.

[Choi 89] Choi, S., and W. Scacchi. \Assuring the Correctness of Con�gured Software Descrip-

tions." Proc. 2nd. Intern.Workshop Software Con�guration Management ACM Software

Engineering Notes, 17(7) (1989), 67-76.

[Choi 90] Choi, S.C. and W. Scacchi. \Extracting and Restructuring the Design of Large Sys-

tems". IEEE Software 7, 1 (1990), 66-71.

[Choi 91] Song Choi and Walt Scacchi. \SOFTMAN: AN Environment for Forward and Reverse

Computer-Aided Software Engineering". Information and Software Technology, to ap-

pear (1991).

[Garg 88] Garg, P.K. and W. Scacchi.\A Software Hypertext Environment for Con�gured Software

Descriptions." Proc. Intern. Workshop on Software Version and Con�guration Control,

January, 1988, pp. 326-343.

[Garg 90] Garg, P.K. and W. Scacchi. \A Hypertext System to Manage Software Life Cycle Doc-

uments". IEEE Software 7, 3 (1990), 90-99.

[Karr 90] Karrer, A. and Scacchi, W. \An Extensible Object-Oriented Tree/Graph Editor". ACM

SIGGRAPH Symp. on User Interface and Software Technology, October, 1990, pp. 84-

91.

[Karr 91] Karrer, A. and Scacchi, W. \Meta-Environments for Software Development". submitted

for publication, October (1991).

[Mi 90] Mi, P. and W. Scacchi. \A Knowledge Base Environment for Modeling and Simulating

Software Engineering Processes". IEEE Trans. Knowledge and Data Engineering 2, 3

(1990), 283-294.

[Peiw 91] Peiwei Mi and Walt Scacchi. \Process Integration for CASE Environments." submitted

for publication, May (1991).

8



[Nara 87a] Narayanaswamy, K. and W. Scacchi. \A Database Foundation to Support Software

System Evolution". J. Systems and Software 7 (1987), 37-49.

[Nara 85] Narayanaswamy, K. and W. Scacchi. \An Environment for the Development and Main-

tenance of Large Software Systems." Proc. SOFTFAIR II, 1985, pp. 11-25.

[Nara 87b] Narayanaswamy, K. and W. Scacchi. \Maintaining Con�gurations of Evolving Software

Systems". IEEE Trans. Soft. Engr. 13, 3 (1987), 324-334.

[Noll 91] Noll, J. and W. Scacchi. \Integrating Diverse Information Repositories: A Distributed

Hypertext Approach". Computer 24, 12 (1991), to appear.

[Scac 89] Scacchi, W. \On the Power of Domain-Speci�c Hypertext Environments". J. Amer. Soc.

Info. Science 40, 3 (May 1989), 183-191.

[Scac 91] Scacchi, W. \Understanding Software Productivity: Towards a Knowledge-Based Ap-

proach". Intern. J. Soft. Engr. and Know. Engr. 1, 3 (September 1991).

[Scac 86] Scacchi, W., S. Bendifallah, A. Bloch, S. Choi, P. Garg, A. Jazzar, A. Safavi, J. Skeer,

and M. Turner. Modeling System Development Work: A Knowledge-Based Approach.

Computer Science Dept., USC, 1986. working paper SF-86-05.

6 Biography

Walt Scacchi received a B.A. in Mathematics, a B.S. in Computer Science in 1974 at California

State University, Fullerton, and a Ph.D. in Information and Computer Science at University of

California, Irvine in 1981. He is currently an associate research professor in the Decision Systems

Dept. at USC. Since joining the faculty at USC in 1981, he created and continues to direct the

USC System Factory Project. This was the �rst software factory research project in a U.S. univer-

sity. Dr. Scacchi's research interests include very large scale software production, knowledge-based

systems for modeling and simulating organizational processes and operations, CASE technologies

for developing large heterogeneous information systems, and organizational analysis of system de-

velopment projects. Dr. Scacchi is a member of ACM, IEEE, AAAI, Computing Professionals for

Social Responsibility (CPSR), and Society for the History of Technology (SHOT).

9


