
Using Code Reusability Analysis to

Identify Reusable Components

from the Software

Related to an Application Domain

Guillermo Mayobre

Hewlett Packard

Grenoble Networks Division

5, Ave. Raymond Chanas

38053 Grenoble CEDEX 9

gm@hpgntol1,grenoble.hp.com

Abstract

The combination of SW metrics with domain expertise and economical evaluation of reuse

costs, provides a way to select reusable workproducts from the software related to a domain

of application.

1 Introduction

One of the major problems in software reuse is the lack of reusable components despite the large

amount of existing software. Reuse e�ciency and cost e�ectiveness highly depend on the number of

available components. In fact existing software has captured past experience and knowledge, and

that is particularly true under an application domain scope.

The idea of using that existing software to identify reusable components is very attractive. A

methodology to identify and select reusable software components from an existing code is extremely

helpful, not only to provide code components, but also to identify reusable workproducts that have

been codi�ed by the past.

The Code Reusability Analysis (CRA) combines three methodologies and an economical es-

timation to identify and select reusable workproducts from the code associated to a domain of

application.

1

2 Overview

The �rst methodology involved is the one proposed by Caldeira and Basili [Cald 91]. It allows

identi�cation of reusable components based on software metrics.

The second one, the Domain Experience Based Component Identi�cation Process (DEBCIP)

is based on domain experience and uses a standard decision graph to help domain experts on the

process of identifying reusable components.

The third one, the Variant Analysis Based Component Identi�cation process (VABCIP) also

based on domain experience, uses code metrics to estimate the speci�cation distance between a

new product and the existing software in the domain (or subset of software of the domain). This

methodology select components from the existing software, whose speci�cation distance, to the new

targeted functionality implies a re-engineering e�ort lower than building the component from the

scratch.

The economical estimation of the Component Return on Investment (CROI), uses economical

models like Component Cost, Reuse Costs Investment and Bene�ts, Reuse Cost E�ectiveness, to

estimate the Return on Investment per Component.

Selecting components from the existing software to be reused globally on the domain of applica-

tion di�ers from selecting components to be reused to build a new target functionality. The second

case is a subset of the �rst one in the sense that it reduces scope of search -(functions of a new

product against all possible functions of a Domain of Application)- .

The Code Reusability Analysis is useful to perform both types of selection depending on the

way methodologies are combined.

DEBCIP is tailored to identify components with the highest reuse potential within the overall

domain scope. VABCIP is performant to identify components to be reused on a new targeted

functionality.

However those methodologies may be very expensive when applied to a large amount of software,

in terms of time consumed by the experts and product marketing resources. C&B does not require

neither expert nor product marketing resources, and in addition it may be automized completely.

An interesting idea is then to use C&B before either DEBCIP or VABCIP to reduce the amount of

code to be analysed by the experts. Once potential reusable components has been identi�ed using

C&B, experts review them from the perspective of the domain of application.

At the last step, an estimation of the Component Return On Investment of the candidates re�nes

the �nal choice.

This paper explores several ways of combining those methodologies to �nd the better strategy

to select reusable components from the software associated to a domain of application, in order to

build a new target functionality, minimising the implementation e�ort and maximising the external

reuse level.

3 Background

This chapter gives an overview of the methodologies and economical models included on the Code

Reusability Analysis.

2

3.1 The Caldeira and Basili methodology

It de�nes three major attributes that characterises the reusability of a component: usefulness, cost

to reuse and quality. It proposes four software metrics to estimate the attributes values: Volume

(V), Cyclomatic Complexity (C), Regularity (R) and Reuse Frequency (RF).

Figure 1 is a �shbone diagram showing attributes and metrics relation:

The Volume

An Halstead's formula, represents the minimum number of bits necessary to code a module

information:

V = (N1 +N2) log

2

(n1 + n2)

Where n1: total number of operators used by the program,

N1: total count of all usage of the operators,

n2: total number of unique operands de�ned and used by

the program,

N2: total count of all usage of operands.

If the component volume is too small, the cost to reuse the component (extraction, adaptation

and integration), may exceed the cost to building it from scratch.

If the volume is too large, the quali�cation will probably be lower and the component more error

prone.

The Cyclomatic Complexity

It computes the maximum number of independent paths:

C = e� n+ 2

Where e: number of edges,

n: number of nodes.

The bigger the complexity the higher the number of tests necessary to walk through all the code,

and thus the e�ort to qualify the module.

Once again a very low complexity may not repay the cost of extraction, adaptation and integra-

tion. A high complexity will probably imply a lower than expected quali�cation and a higher risk

of error.

The Regularity

Is the ratio between the expected length and the actual length of a component:

R =

n1 log

2

n1 + n2 log

2

n2

(N1 +N2)

3

Figure 1. The Basic reusability attributes model.

(Caldeira & Basili)

4

In other words it measures readability and non redundancy of component implementation. A

regularity close to one indicates a well implemented component.

The Reuse Frequency

It measures the potentiality of a component to be reusable. It is the ratio between the number

of static calls to a component with respect to the average number of static calls to a system module.

The higher the reuse frequency , the bigger the reuse potentiality of a component.

RF =

n(C)

1

M

P

M

i=1

n(S

i

)

Where M: number of system modules,

n(C): number of static calls to the component C,

n(Si): number of static calls to the system module Si.

Ranges must be de�ned for every metric to measure the results. They may di�er depending of

the type of analysed code. Range values we used in our practical example are given in the case

study section.

3.2 DEBCIP and VABCIP

The Domain Experience Based Component Identi�cation Process DEBCIP and the Variant Analysis

Based Component Identi�cation Process VABCIP, illustrated in Figure 2 and 3 respectively, are

both based in similar concepts.

Both methodologies evaluate reuse potentiality based on speci�cation distance and expected

number of reuse instances. DEBCIP needs an important investment in domain analysis. Domain

bounds must be well de�ned and domain model must be available to be able to evaluate the reuse

potentiality of a component. Existing software functionality is compared to all the possible func-

tionalities described in the domain model to evaluate expected number of instances and speci�cation

distance.

The speci�cation distance evaluation on DEBCIP is relatively complex. The �rst step is to de�ne

and intersection between all the target functionalities that we want to cover with a component, we

call it the reduced functionality. Then, the speci�cation distance from the existing software is

evaluated to the reduced functionality.

As the reduced functionality is very sensible to product strategies, market pressures and even re-

sources
uctuation, the speci�cation distance is used on DEBCIP more as an information parameter

rather then a decision parameter.

The biggest emphasis is put on the estimation of the expected number of reuse instances.

VABCIP reduces the scope of search. Reuse potentiality of components is evaluated regarding

a unique or a very few new targeted functionalities that are very close one to each other. On that

case the major e�ort is put in the evaluation of the speci�cation distance from the functionality of

the existing software to the new targeted one. A well de�ned domain model is not crucial, and thus

the prior investment on domain analysis is lower.

5

Figure 2. DEBCIP decision graph.

6

Figure 3. VABCIP Decision graph.

7

R VABCIP (Reduced VABCIP) is a variant of VABCIP. The software whose functionality is com-

pared to the new target one is a subset of the existing software related to the domain. R VABCIP

process is also illustrated by Figure 3.

Collecting decisional information:

Decision graphs provide a frame to collect decisional information: cost evaluation for changes

on the analysed component to made it reusable, and expected number of reuse instances. (Figure

3 shows where cost of changes are evaluated in the VABCIP: fSCg, fDCg, fCCg).

Computed decisional information is used to feed the economical models to estimate the compo-

nent Return On Investment.

Evaluating costs:

Costs to change, what we called adaptation costs, are evaluated based on software metrics. We

commonly use Cyclomatic complexity to evaluate the productivity.

To each phase of software development: speci�cation, design, code, unit testing, integration

testing and tools development, we associate a productivity expressed in:

Nb.of branches (or Independent paths = Cyclomatic Complexity)/ Engineer.week.

Once a change is identi�ed at any part of the graph, it is estimated on Cyclomatic Complexity.

The adaptation e�ort to made the component reusable is then evaluated according to the type of

change (speci�cation, design, code,..) by applying the corresponding productivity metric.

At the end of the graph walk through, the reuse potentiality of a component may be: None

(non reusable) or Reusable with or without an associated adaptation cost and a number of reuse

instances.

4 The economical evaluation

Reuse is cost e�ective when reuse cost bene�ts are bigger than reuse cost investments. Cost e�ec-

tiveness of software reuse is an essential decision parameter that must be estimated at the earliest

stage of product development.

If an early estimates indicates that the total reuse bene�ts will be very low, we should do only a

limited investment in reuse technologies. If at the contrary the estimates shows a big reuse bene�ts

we should make substantial investment in advanced reuse technologies.

On reuse oriented software development we can distinguish two main types of activities: prod-

uct development and component development. Product development may be almost completely

classi�ed on the design WITH reuse side, while component development may almost completely

classi�ed on the design FOR reuse side. From this perspective reuse is cost e�ective when bene�ts

of designing WITH reuse are bigger than investments on designing FOR reuse.

In addition to the cost e�ectiveness another important parameter to evaluate the performance

of an investment is the Return On Investment which is the ratio between the reuse costs bene�ts

and the reuse costs investments.

The Component Return On Investment is estimated for every candidate component to decide

whether or not it is e�ectively reusable.

8

Economical models like component cost, reuse costs investment and bene�ts, reuse cost e�ec-

tiveness, are needed to estimate the component return on investment.

The reusable component cost model The cost to produce a reusable component may be expressed

as:

RCC = Eor � CC +DBC

Where RCC: Reusable Component Cost. Measured in Eng.week.

CC : Component Cost. Cost of the component as

designed not for reuse.Measured in Eng.week.

Eor: Reuse expansion (or multiplication) factor.

DBC: Data Base Cost per component. Measured in Eng.week.

Eor includes all additional costs to implement a reusable component. Additional documentation

costs, speci�cation costs, design costs , code costs,

DBC includes the Data Base maintenance cost (system backup, con�guration, maintenance) and

also the Librarian activities. Librarian activities includes tasks as work in reusables assets to made

them visible to potential users, marketing functions to identify users needs, component purchase,

...

Reuse cost investment

Is the additional cost needed to made a component reusable. From that perspective it may be

expressed as the cost di�erence between developing a component to be reusable against developing

the same component not for reuse.

RI = (Eor � 1) � CC +DBC

Where RI: Reuse Cost Investment. Measured in Eng.week.

Reuse costs bene�ts Bene�ts of reusing a component may be calculated as:

RB = CC �A�DBR

Where RB : Reuse Costs Bene�ts. Measured in Eng.week

A : Adaptation cost. Measured in Eng.week. Is the cost

to adapt the component to integrate it to the new

application.

DBR: Cost to search the component in the Data Base.

9

Regarding the above de�nitions we may express the Component Return On Investment as the

ratio between the sum of individual bene�ts for each reusing activity and the reuse costs investment

to made the component reusable.

CROI =

NbInst(CC �DBR) �

P

NB:inst

i=1

A

i

(Eor � 1)CC +DBC

Where CROI : Component Return On Investment.

NBinst: Number of expected reuse instances.

Ai : Adaptation cost for integrating the component to

an activity i.

Cost e�ectiveness of a reuse activity

It may be also interesting to evaluate the reuse cost e�ectiveness of a project involved in a reuse

oriented software development process considered in terms of the balance between the reuse cost

bene�ts of designing WITH reuse against the reuse cost investment in designing FOR reuse:

Ceff =

NB:CNS

X

i=1

fCC

i

� (A

i

+DBR

i

)g �

NB:PROD

X

i=1

f(Eor � 1)CC

i

+DBC)

Where NB. CNS:

Is the number of consumed reusable components

when designing WITH reuse.

NB. PRD:

Is the number of produced reusable components

when designing FOR reuse.

5 The Experience

The experience was conducted over a case study to compare the usage of C&B combined with

R VABCIP against the usage of VABCIP.

5.1 Context:

The case study is on the context of the software reuse program at Hewlett Packard Grenoble

Networks Division.

This program has been running since 1.5 years. Models and methodologies proposed in addition

to the Caldeira and Basili's one, has been developed by the reuse sta� (apart from the project sta�)

during the reuse program development.

10

5.2 Problem Statement

It may be expressed generically as: Given an Application Domain with the associated workproducts

and architecture, and given the speci�cations of a new product within the Domain, implement it,

in such a way to maximise the external reuse level and minimise the implementation time. Of

course that implies reusing, already existing components, and new selected ones, not yet recorded

as reusables.

5.3 The Case Study

The analysed code is a subset of the software developed for the Datacomunications Front End

Application Domain (DTC-FE). The subset was delimited according to architectural considerations:

for example we do not analyse code involving X.25 sta�, because we are leading mostly with Telnet

Protocol and MPE/XL terminal IO.

Size of the analysed code is 35K NCSS.

The new product speci�cation are the one of the pilot project ECRINS, involved in the Software

Reuse Program.

ECRINS project information:

� Sta�: 7.5 engineers.

� Estimated Code Size: 40K NCSS (Non Commented Source Statements). (ECRINS is applying

Formal Reuse Oriented Software Development Process, based on the results of the Code

Reusability Analysis study).

The Code Reusability Analysis takes four weeks. It involves a Domain Expert (architect), a

Domain Analyst and a SW Engineer expert in SW metrics.

5.4 Results

Results are summarised in Figure 4.

Column 1 shows the results of applying C&B for two di�erent Reuse Frequency: .5 and .3, and

with 800< V <4000, .65< R < 1.35 and 5< C <16.

Column 2 shows the results after experts performed R VABCIP on the components previously

selected by C&B.

Column 3 measures the accuracy of C&B by computing the percent of components retained by

the experts from those detected by C&B.

Those results shows C&B as very accurate. Even for the case of lower reuse frequency the

percent of code complexity retained after the experts advise of the code selected by C&B is 88%.

Column 4 shows the result of applying VABCIP directly. Column 5 and 6 compares results

between C&B + R VABCIP and VABCIP. As shown, the amount of selected components, code

complexity and total e�ort avoided are higher when using VABCIP. But the selection time is 5

times longer.

The Component Return On Investment estimation was 1.66 in average, and none of the compo-

nents had a CROI lower than 1.

11

Figure 4. Results.

12

Figure 5. Component Reusability Analysis Strategies.

6 Conclusion

The strategy to follow to select reusable workproducts from the software related to a domain of

application is shown in Figure 5.

At the left side of the dashed line is shown the selection of workproducts globally reusables for

the domain. That case was not considered on the case study, but, for medium to large systems we

recommended to go �rst through C&B. Then use DEBCIP for the retained components to estimate

the expected number of reuse instances and speci�cation distance, and �nally do CROI to evaluate

the component return on investment.

At the right side of the dashed line is shown the selection of workproducts reusables on a new

target functionality. In that case the strategy is the following: Use C&B + R VABCIP as a �rst

estimation. If you are about or better than the reuse objectives: shortage,... go directly through

CROI. If you are far behind, perform VABCIP.

In between, evaluate the cost of VABCIP with respect to the e�ort needed to develop from

scratch the non detected components.

References

[Bigg 89] Biggersta� and Perlis, Software Reusability, ACM Press, 1989.

13

[Cald 91] Caldieri and Basili, \Identifying and Qualifying reusable software componentsi" IEEE

Computer, February, 1991.

[Booc 87] Booch, G., Software Components with Ada, Benjamin/Cummings, 1987.

[Barn 91] Barnes and Bollinger, \Making reuse cost e�ective", IEEE Software, January, 1991.

[Boeh 83] Boehm, B., Software Engineering Economics, Prentice-Hall, 1983.

[Chau 91] Chauvet, \Une analyse economique de la reutilisabilite", AFCET Interfaces, Mai/Jun,

1991.

[Prie 91] Prieto-Diaz and Arango, \Domain Analysis and System Modelling".

14

