
Software Reuse in Speci�cation-Based Prototyping

Luqi

J. McDowell

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

luqi@cs.nps.navy.mil

Abstract

This paper explains the mechanisms for retrieving reusable software components used by

CAPS, a computer-aided prototyping system for embedded and real-time software systems.

The software retrieval system has been designed to provide retrievals with both high precision

and high recall by exploiting the speci�cations associated with these prototypes. This speeds

up software reuse by enabling the system to reduce the amount of information that a designer

must examine to �nd an appropriate reusable component.

Keywords: prototyping, component speci�cation, software retrieval, normalization, syntactic

& semantic matching

1 Introduction

This paper addresses the design and implementation of the automated reusable software retrieval

system in the Computer Aided Prototyping System (CAPS) [?]. The purpose of CAPS is to speed up

prototyping for large Ada programs that can have hard real-time constraints. CAPS addresses these

goals via software reuse, partial code generation, automatic construction of real-time schedules, and

computer-aided design tools. CAPS supports automated retrieval of software components based on

speci�cations expressed in the prototyping language PSDL [?]. These speci�cations serve a dual

purpose: to document the requirements and design of a prototype, and to support accurate retrieval

of appropriate reusable software components.

1

2 Relation to Previous Work

Almost all of the tools developed to assist in reusing software components use one or more of the

following three approaches: interactive browsers, automated retrievals based on informal speci�-

cations, and automated retrievals based on formal speci�cations. Browsers are easy to implement

and they are provided as backup methods by many systems, including CAPS, but they rely on the

user's knowledge of the structure of the library and can require examination of the entire library

in the worst case. Automated retrieval facilities based on informal speci�cations are also provided

by many systems. The most popular variants are keyword searches (CAPS, the Operation Sup-

port System OSS), multi-attribute queries based on faceted classi�cation (CAPS, DRACO, RAPID,

OSS, the Reusable Software Library, the Common Ada Missile Packages project CAMP), and nat-

ural language searches (Reusable Software Library). CAPS also supports retrievals based on formal

speci�cations. Formal speci�cations can support more accurate retrievals than informal speci�ca-

tions, although retrievals can be potentially time consuming. The CAPS system alleviates this

problem via a layered set of increasingly re�ned �lters, so that the more time consuming methods

are applied only to relatively small sets of components.

3 Software Base Functions

The CAPS software base management system must perform three main tasks: query by speci�ca-

tion, component browsing, and component transformation. The ability to query the software base

to �nd software components satisfying a given PSDL speci�cation is an essential part of the rapid

prototyping method supported by CAPS. Component browsing gives the designer the ability to lo-

cate and view components in a manner other than by PSDL query, and provides interim bottom-up

guidance for developing decompositions until automated assistance for this function can be devel-

oped. Component transformation is required once a reusable component is located to materialize

any needed generic instantiations in a form consistent with the coding conventions of the CAPS

execution support system.

3.1 Query by Speci�cation

The CAPS software base stores components in an object-oriented database and uses PSDL speci�-

cations as the basis for high recall queries. Each stored component consists of a PSDL speci�cation,

a PSDL description of the implementation, the implementation code, and a normalized version of

the PSDL speci�cation. The syntax and semantics of the PSDL speci�cation are used to direct the

search for a component.

Figures 1 and 2 summarize the steps necessary to store components in the software base and to

retrieve them using a given query speci�cation. Components to be stored must �rst pass through

syntactic and semantic normalization (see Figure 1). The normalization processes transform the

component's PSDL speci�cation to facilitate later matching. Syntactic normalization involves pri-

marily format changes and statistical calculations while semantic normalization involves speci�ca-

tion expansion and transformations.

2

+-------------+ +-------------+

Component | Syntactic | | Semantic |

Specification----->|Normalization|----->|Normalization|

| +-------------+ +-------------+

| +-------------+ |

+------->| Database |<-------+

| Storage |

+-------------+

Implementation ^ ^ Implementation

Specification ---------^ ^--------- Body

Fig. 1 Process for Adding a Software Component

PSDL Syntactic Software Semantic Component Query

Specification->Normalization->Base Query->Normalization->Ranking ->Result

Fig. 2 Process for Retrieving a Software Component

Figure 2 shows the general process for component retrieval. A query for a library component is

formed by constructing the PSDL speci�cation for the desired component. The query speci�cation

is syntactically and semantically normalized and then matched against the stored speci�cations.

The retrieval process starts with a faceted classi�cation step in which attributes that are derived

from the PSDL speci�cation are used as a multi-attribute index to select a subset of the database

to serve as the starting point for the rest of the process. A major di�erence between the CAPS

approach and other systems that use multi-attribute searches is that the attribute values are derived

from the formal speci�cation by a repeatable and completely automatic process. This ensures that

components are eliminated from consideration only if they could not possibly satisfy the query.

After selection of a database partition based on the multi-attribute index, the partition is ex-

haustively scanned and passed through the syntactic matching �lter.

The components that remain are then passed through several semantic matching �lters. Syn-

tactic matching of the query component takes place before semantic matching because syntactic

matching is faster than semantic matching and is used to partition the software base quickly in

order to narrow the list of possible candidates that the semantic matching algorithm must consider.

Semantic matching is time consuming and must be applied to as small a candidate list as possible.

The main bene�t of syntactic matching is speed whereas the advantage of semantic matching

3

is accuracy. Accuracy is required in order to reduce the number of reusable components that a

designer will have to evaluate before making a selection. Many functions or types with di�erent

behaviors can have syntactically identical interfaces. Clearly we cannot rely on syntax alone to

provide us a su�ciently �ne grained search.

A semantic process alone would be unacceptable because semantic matching would have to

be applied to every software base component causing the search process to be impractically time

consuming. For a more detailed discussion of the semantic matching mechanisms used by the

software base see [?].

3.1.1 Syntactic Matching

The purpose of syntactic matching is to rapidly eliminate from consideration those modules in the

software base that cannot match the query speci�cation's interface. This matching process [?] uses

the type information in query module's PSDL interface speci�cation to formulate a query.

The attributes of a PSDL speci�cation p for a software component c that are important to the

syntactic matching process are the following:

S(p)= (fIn(t, n) : there are n>0 occurrences of type t as input parameters to c g,

fOut(t, m) : there are m>0 occurrences of type t as output parameters from c g,

fE : E is an exception de�ned in cg,

fSt : St is a state variable in cg)

S(p) is the interface subset of the PSDL speci�cation for module c and is the only part of the

speci�cation that pertains to the syntactic matching process.

Given a software base module c, and a query module q, along with their respective PSDL

interface speci�cations S[c] and S[q] c is a syntactic match for q if and only if all of the following

constraints are met:

(1) Exists f[i] : S[q] {> S[c] such that

[f[i](In[q](t, n)) = In[c](t', m)

and m = n

and (t = t' or t' is a generic match of t)

and f[i] is bijective]

(2) Exists f[o] : S[q] {> S[c] such that

[f[o](Out[q](t, n)) = Out[c](t', m)

and m = n

and (t = t' or t' is a generic match of t)

and f[o] is injective]

(3) if |ST[q]| > 0 then |ST[m]| > 0 else (|ST[q]| = 0

= |ST[m]|)

To improve e�ciency, we use the matching rules to derive a set of module attributes that can

be used to rapidly identify and reject modules with unsuitable interfaces. Some examples of these

derived attributes include:

4

If the number of input parameters in S[q] is not equal to the number input parameters in S[c],

then there can be no function f[i] to satisfy rule 1. Therefore S[c] can be eliminated from the search.

If the number of output parameters in S[q] is greater than the number of output parameters in

S[c], then there can be no function f[o] to satisfy rule 2. Therefore S[c] can be eliminated from the

search.

If S[q] has state variables de�ned (i.e. q de�nes a state machine) but S[c] has no state variables,

then S[c] can be eliminated from the search.

The rules for the syntactic matching of type modules are similar to those for operator modules

with the addition of a mapping function to map the operators of S[q] to the operators of S[c] and

an additional check to ensure the generic parameter substitutions used for this mapping function

are consistent for all operators in S[c].

3.1.2 Semantic Matching

Semantic matching is based on test cases and symbolic inference. The set of components that pass

the syntactic matching all have interfaces that are type-consistent with the query. These compo-

nents are passed through a set of �lters de�ned by test cases derived from the PSDL speci�cation.

Additional test cases and additional �lter passes are generated until either the set of candidates is

small enough or the last new test case did not eliminate any components. At this point the remain-

ing candidates are likely candidates for satisfying the query. The �nal phase consists of a set of

automated theorem proving techniques that attempt to conclusively show that one of the retrieved

components does satisfy the query speci�cation. These are based on algebraic speci�cations, term

rewrite systems, and a fast but limited inference method.

3.2 Component Browsing

Although browsing by component name and keyword browsing are not the preferred methods for

�nding reusable components in a large software base, they are needed to allow users to familiarize

themselves with the components in the software base and to allow the software base administrators

to maintain them. The software base was designed and implemented to support both keyword

queries and named look up. The result of a keyword query is a list of those components that

possess one or more of the query keywords. The list is ordered with those components that satisfy

the most query keywords coming �rst.

3.3 Component transformation

The goal of the software base is to provide to CAPS a component implementation that is an exact

match for a query speci�cation and meets the needs of the CAPS execution support system. To

accomplish this, once a reusable software component has been located it must be transformed into

a form that matches all of these requirements. This transformation involves changing parameter,

type, and operator names of the library component to match those of the query speci�cation as

well as instantiating any generics.

The CAPS software base cannot directly generate implementation code because it is not language

speci�c. It can generate an abstract representation of how the library component satis�es the

5

syntax and semantics of a query component. This representation can then be used by a translation

tool speci�c to a particular implementation language to generate the implementation code. This

method of component integration is preferable since components coded in additional implementation

languages can be added to the software base as long as a translation tool to generate the �nal

implementation for each implementation language is provided.

4 Position

We believe that speci�cation-based software retrieval is feasible and necessary for e�ective reuse in

large libraries, to prevent the designer from being swamped by mountains of irrelevant components.

References

[Luqi 88] Luqi and M. Ketabchi, "A Computer Aided Prototyping System", IEEE Software 5, 2

(March 1988), 66-72.

[Luqi 88b] Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", IEEE

Trans. on Software Eng. 14, 10 (October, 1988), 1409-1423.

[McDo 91] J. McDowell, "A Reusable Component Retrieval System for Prototyping", M. S. Thesis,

Computer Science, Naval Postgraduate School, Monterey, CA, Sep. 1991.

[Stei 91] R. Steigerwald, Luqi and J. McDowell, "A CASE Tool for Reusable Software Component

Storage and Retrieval in Rapid Prototyping", Information and Software Technology 38,

11 (Nov. 1991).

[Luqi 87] Luqi, "Normalized Speci�cations for Identifying Reusable Software", Proc. ACM-IEEE

Computer Society 1987 Fall Joint Computer Conference, p. 46-49, Dallas, TX, October,

1987.

[Gris 91] M. Griss, "Software Reuse at Hewlett-Packard", Position paper for Workshop on Reuse,

OOPSLA'91, Oct. 6, 1991.

[Bigg 89] T. Biggersta� and A. Perlis, "Software Reusability", Addison-Wesley, 1989.

[Berz 91] V. Berzins and Luqi, "Software Engineering with Abstractions", Addison-Wesley, 1991.

[Free 86] P. Freeman, "Tutorial: Software Reusability", IEEE Computer Society, 1986.

[wIIT 83] Proceedings, Workshop on Reusability in Programming, ITT Programming, Stratford,

Connecticut, Sep. 1983.

6

5 Biography

Dr. Luqi received the B.S. degree from Jilin University, China, received the M.S. and Ph.D. degrees

in Computer Sci- ence from University of Minnesota, and is currently an asso- ciate professor at

the Naval Postgraduate School. She worked on software research & development for the Science

Academy of China, University of Minnesota, University of Maryland, International Software Sys-

tems Inc., and etc. She is a technical consultant for the computer industry. Her research interests

include rapid prototyping, real-time sys- tems, design of computer languages, software reuse, speci�-

cations, software con�guration management, software development tools, and scienti�c computing.

Her research is supported by the National Science Foundation, the O�ce of Naval Research and

many other agencies. She received an Engineering Initiation Award and a Presidential Young Inves-

tigator Award from NSF. She has published more than �fty technical papers in professional journals

and conferences as well as co-authored several books. She is an associate edi- tor for IEEE Expert

and the Journal of Systems Integration. She has supervised more than twenty-eight M. S. and Ph.

D. theses in software engineering.

Her current address is NPS CS/Lq, Monterey, CA 93943.

7

