
Increased Productivity Through Reuse:

An Economist's Perspective

Don Lavoie, Howard Baetjer, and William Tulloh

Center for the Study of Market Processes

George Mason University

Fairfax, VA 22030

agorics@gmuvax.gmu.edu

Abstract

From the economic viewpoint, increased software reuse seems to depend on these factors:

� continuing development and use of the modularization techniques of encapsulation and

information hiding in order to save on maintenance costs

� division of programmer labor into increasingly specialized areas, accompanied by area-

speci�c tools, frameworks, and reusable components

� investment in a healthy reuse environment, including market-based management struc-

tures that address the communication, discovery, and incentives problems, and the in-

creased use of component libraries and/or markets

� property rights regimes that appropriately balance producer and user interests.

1 Introduction

Widespread reuse of software components has long been advocated as a key to increased productivity

and better quality software. In addition, markets in reusable components have been seen by some

as an important element in realizing these improvements [McIl 68, Broo 87, Cox 90]. While much

progress has been made in addressing the relevant technical factors, it has become increasingly

apparent that organizational, cultural, institutional, and economic factors must also be addressed

in order to reap the gains from wide-scale reuse.

Among the important technical advances have been developments in abstraction mechanisms,

modularization techniques and object oriented technologies. These technologies promise to play an

important role in helping to realize the bene�ts of reuse by enabling alternative ways of packag-

ing software through modular construction. Software developers will be able to take advantage of

economies generated by the increased division of labor and capital, while maintaining the exibility

1



needed to adapt to changing requirements and demands. Some of the bene�ts taht are seen as deriv-

ing from reuse include lower development costs, reduced time of development, greater predictability

of budget and schedule, and lower maintenance costs.

The Agorics Project, a team of researchers at the Center for the Study of Market Processes at

George Mason University, is now engaging in a comprehensive study of the software components

industry. Our study will examine the interaction of these technological advances with the insti-

tutional and economic factors that will a�ect the development of a vigorous software components

industry. In particular we will investigate the possibility of markets in reusable components.

2 Modular Construction and Object-Oriented Technolo-

gies

Many di�erent visions of markets of software components have been proposed, based on a wide

variety of abstraction mechanisms and resulting de�nitions of components. Our own investigation

is taking a rather inclusive view of the possible scale and nature of these components, but we see

object-oriented methods as an indispensable part of the move to reuse. The more modular methods

of software development that result from the adoption of object-oriented technologies promise to

provide a dramatic increase in the reuse of components and frameworks.

A key aspect of object-oriented programming in encouraging reuse is the support of encapsula-

tion. Encapsulation of domain abstractions allows for greater reuse of others' experience. Informa-

tion hiding through encapsulation also eases the task of integrating di�erent components. Mark S.

Miller and K. Eric Drexler have liked encapsulation in object-oriented programming to the discov-

ery by programmers of property rights over data [Mill 88]. They write, \encapsulation in software

serves the same crucial function as property rights in human a�airs: it establishes protected spheres

in which entities can plan the use of their resources free of interference from unpredictable external

inuences." This modularization of data and action helps provide greater exibility in the reuse of

software components.

One great virtue of property rights in markets is the ability to rearrange them in response to

changing circumstances and in order to meet new demands. Similarly, object-oriented methods

promise better maintainability and evolvability through encapsulation and information hiding. The

modular nature of object-oriented development encourages reuse by facilitating alternative packag-

ing of functionality across di�erent applications, allowing a wider variety of user requirements to

be met. In addition, modular construction allows greater scope for reuse in sequential versions of

an application by facilitating quicker response to changing user requirements through time.

3 The Structure of Production of Software

Reuse in software involves a shift to a more capital-intensive software development process [Wegn 84].

The accumulation of capital is the accumulation of knowledge and experience. Capital goods such

as components, frameworks and designs embody domain knowledge, while tools, environments and

methodologies embody knowledge that aids in the solution of recurrent software development prob-

lems. E�ective reuse must build on prior experience and adapt this knowledge to constantly evolving

2



needs. To achieve large gains in productivity and quality from reuse will require reuse across a vari-

ety of developers and organizations. New software communities [Gibb 90] must emerge that enables

large-scale cooperative reuse.

Traditionally economists have seen increased productivity as resulting from the increased com-

plexity of the structure of production { the extension of the division of labor and greater use of

capital. Software development, however, is still based largely on a model of craft production.

Craft production has certain advantages; most important among them is its exibility in adapt-

ing to rapid change and in customizing the product to meet speci�c needs. Human capital, the

skills and experience of programmers, represents the main source of reuse, as well as the main

source of creativity and exibility. But a reliance on specialized human capital can be risky: wide

diversity in skills, high programmer turnover, and the expense of training and education, all limit

the e�ectiveness of this form of reuse. More importantly, however, this form of production does not

scale up well in its ability to cope with more and more complex software projects.

A common solution to this problem in other industries has involved a shift from a complex

production process to a more complex structure of production. Rather than build in a single

complex stage with multipurpose human capital, the idea is to build a complex series of simpler

stages with more specialized human capital. The increasing division of labor is aided by the division

of tasks into easily manageable units, and by the standardization among resulting static advantages

of the division of labor: 1. increased mechanization { the substitution of capital goods for human

capital 2. reduction in the amount of human capital (skill) required for each task due to the

increased routinization of tasks, and 3. economies of scale in manufacturing.

But software is not amenable to traditional scale economies of mass production. Software

development requires greater exibility than is o�ered by the e�ciency gains in standardized man-

ufacturing processes. In software, development, not manufacturing, is of the essence. Moreover,

attempts to bene�t from an increased division of labor are often overwhelmed by coordination and

communication problems [Broo 75].

What is needed is the ability to maintain the exibility and creativity of the craft approach,

while reaping the gains in productivity due to a greater division of labor and a greater use of

capital, thus enabling more complex software projects to be undertaken. Such an approach which

some have termed \lean production" as contrasted with craft and mass production, must focus on

the dynamic advantages of division of labor and capital [Woma 90]. These advantages come from

the more e�ective use of knowledge and enhanced learning that accompanies such coorperative

e�orts. The advantages can be found in: 1. the increased rate of discovery of product and process

improvements 2. the move from human capital to knowledge embodied in capital goods seen not

as a dumbing down of production, but as a freeing up of human capital for application on the

margin of improvement, and 3. economies of scope, not of scale, in development from the sharing

of resources and experience across multiple projects [Cusa 91].

4 Investment in Reuse

To realize these bene�ts requires new organizational and institutional responses to the increased

division of labor and capital. Changes in the technological structure of production must be accom-

panied by changes in the institutional structure of production. A variety of property right regimes,

3



contractual relationships, and management structures must be explored to solve problems that arise

with the communication and incentive that coordinate di�erent stages of the production. The forms

that will emerge depend on tradeo�s between various institutional and technological solutions to

these coordination and communication problems.

One important change that arises is the need to ensure an adequate return on the investment

required in developing and maintaining the capital asstes necessary for wide-scale reuse. This

problem emerges whether reusable components are produced within or across �rms. In fact, the

problems within �rms can often be usefully analyzed as analogous to problems in the market.

Investment in reusable software requires that software be managed as a valuable asset, and

that the necessary organizational support be given to ensure a chance at an adequate return on

the investment. This requires a long term commitment by management, including investment in

the complimentary assets (infrastructure), and changes in evaluation criteria and reward structures.

One of the key problems facing the �rm is how to provide appropriate incentives for both the creation

and use of reusable components, and assuring adequate communication of what components are

available.

Much work on reuse has dealt with the most appropriate repository for reusable software com-

ponents. Advances in search techniques and classi�cation schemes provide an important area of

research in improving access to components. Technological advances can help reduce the transaction

costs of search: such techniques as browsers, hypertext navigation, classi�cation methods, software

agents, and good old librarians can all play an important role.

In addition to such improvements in library technology, increasing attention is being paid to the

organizational incentives and communication ows needed to maintain a ow of reusable components

into the library and a ow of reusable components to projects when and where they are needed.

Repositories by their nature are not well suited to providing useful incentives. The problem arises

of how to allocate the costs of building and maintaining the library among the various projects that

use components from the libraries. Software, of course, is not subject to wear and tear, but it is

subject to economic obsolescence. Continual investment is required in the maintenance of value to

user. Rewards for useful contributions to the library and rewards for making use of the library need

to be a fundamental aspect of project development.

Libraries as a shared resource serving many masters can be viewed as what economists call a

commons. The problem is the opposite of the usual story of the commons; the problem is not the

danger of overgrazing a �xed supply of pasture, but of \undergrazing" reusable components due to

the lack of incentives and information regarding what makes for good reusable components, and

when it is appropriate to use them. Care must be taken in setting up the appropriate rewards for

contributions, and in reducing the costs of accessing and learning about the contents of the libraries

on the part of users.

Electronic markets also o�er a potential solution to the problem of a�ordable access to a wide

variety of reusable components. Libraries are essential passive; they wait for users to come search

them. Electronic markets, in contrast, reect the active matching of buyers and sellers. Component

vendors have an economic incentive to produce useful components and to reduce the transaction

costs to users of gaining knowledge of and access to components. We can imagine the emergence of

component brokers who try to match available components to developers' needs.

4



5 Property Rights and Markets in Reusable Software

Many barriers must be addressed before vigorous markets in reusable components will emerge.

Problems of importance include the limited extent of the market due to lack of standards, language

incompatibilities, and domain speci�city, and the need to establish certi�cation, testing and repu-

tation mechanisms. The biggest challenge facing the emergence of markets, however, is establishing

appropriate property rights regimes which can balance producer and user interests. Entrepreneurs

must discover combinations of attributes and functionality that users value (and means of delivery

which keep low the transaction costs to the user) and price them so as to earn pro�ts. The challenge

to establishing markets in software components lies in �nding the institutional and technological so-

lutions which allow producers to be adequately rewarded, and ensure users receive quality software

in a timely and a�ordable manner.

The ease with which software can be copied signals the di�culty of de�ning property rights in

software. Component pricing policy, and the very nature of what is bought and sold, may well

be shaped by tradeo�s between legal and technological means of protecting intellectual property.

Current developments in patent and copyright law may determine what types of reusable compo-

nents may be bought and sold. In addition to intellectual property law, liability issues in regard

to reusable components are also an important issue that must be addressed, but as recent Nobel

Laureate Ronald Coase has argued, this too is at root of a question of ownership [Coas 60].

We need not depend entirely on legal means; as experience from other industries has shown

us, there exists a wide array of possible means of appropriating su�cient return on the investment

in intellectual property. In addition to legal solutions, there are a variety of technological and

marketing options that have worked in other industries. The solutions most appropriate for di�erent

kinds of granularities of software components should emerge as markets evolve.

References

[McIl 68] McIlroy, M. D. (1968) \Mass Produced Software Components" in P. Nauer and B. Randall

(eds.) Software Engineering, NATO Science Committee, October.

[Broo 87] Brooks, Frederick (1987) \No Silver Bullet: Essence and Accidents of Software Engineer-

ing" Computer, April.

[Cox 90] Cox, Brad (1990) \Planning the Software Industrial Revolution" IEEE Software, Novem-

ber.

[Mill 88] Miller, Mark S. and K. Eric Drexler (1988) \Markets and Computation: Agoric Open

Systems" in B. Huberman (ed.) The Ecology of Computation, North-Holland.

[Wegn 84] Wegner, Peter (1984) \Capital-Incentive Software Technology" IEEE Software, 1:3, July.

See also Ludwig M. Lachmann (1956) Capital and Its Strucutre Kansas City: Sheed An-

drews and McMeel.

5



[Gibb 90] Gibbs, Simon, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz, and Xavier Pin-

tado (1990) \Class Management for Software Communities" Communications of the ACM,

September.

[Broo 75] Brooks, Frederick P., Jr. (1975) The Mythical Man-Month: Essays on Software Engineer-

ing, Addison Wesley Publishing Co.

[Woma 90] Womack, James P., Jones, David T., Ross, Daniel, and Carpenter, D.S. (1990) The

Machine That Changed the World New York: Maxell MacMillan International.

[Cusa 91] Cusamano, Michael A. (1991) Japan's Software Factories: A Challenge to U.S. Manage-

ment, Oxford university Press, pp. 427-28.

[Coas 60] Coase, Ronald (1960) \The Problem of Social Cost" Journal of Law and Economics,

October.

6 About the Authors

Don Lavoie is Associate Professor of Economics at George Mason University. He is a leading critic of

centrally planned economics and co-director (with Mark S. Miller) of the Agorics Project, a research

e�ort sponsored by the Center for the Study of Market Processes and aimed at investigating issues

that overlap between computer science and economics. Howard Baetjer and William Tulloh are

graduate students in the Economics Department at George Mason University and members of the

Agorics Project.

6


