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Abstract

A substantial di�culties that is limiting reuse is a lack of perceived quality in the artifacts

being reused. Availability of a part with suitable functionality is not su�cient if the prospective

user does not trust the part and refuses to use it as a result. We present a de�nition of

certi�cation to deal with this situation and propose to exploit this de�nition to permit savings

during testing and maintenance.
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1 Issues in the Certi�cation of Reusable Parts

We claim that one of the substantial di�culties that is limiting reuse is a lack of perceived quality

in the artifacts being reused. Although a software engineer may have a reuse library available, there

is frequently a reluctance to use it because of concerns about part quality. Essentially, the engineer

feels that without a lot of knowledge of a part, he or she would be better o� rebuilding it. That lack

of perceived quality is a detractor from reuse is an observation based only on anecdotal evidence

but appears to be the software-reuse manifestation of the \not-invented-here" syndrome.

The adjective certi�ed is sometimes used to describe parts that have been tested in some way

prior to entry into a library (e.g., [Lenz 87]. Testing parts prior to their insertion into a reuse library

is often claimed to be a productivity advantage. There is the vague expectation that building

software from tested parts will somehow make testing simpler or less resource intensive, and that

products will be of higher quality [Bass 87, Knig 92, Lenz 87]. Despite the various discussions of

testing and reuse, the term certi�ed is not formally de�ned in the reuse literature.

We are engaged in a research program that is addressing the issue of certifying reusable parts.

We advocate the development of software by reuse with the speci�c intent of establishing as many
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of the required properties in the �nal product as possible by depending upon properties present in

the reusable parts. For this goal to succeed, a precise de�nition of certi�cation of reusable parts is

required. Given the informal notions of certi�cation that have appeared, it is tempting to think that

a de�nition of certi�cation should be in terms of some test metric or similar. The major di�culty

with this approach, no matter how carefully applied, is that any single de�nition that is o�ered

cannot possibly meet the needs of all interested parties. A second di�culty is that by focusing on a

testing-based de�nition, other important aspects of quality, such as e�cient execution performance

or ease of maintenance, are omitted from consideration. These di�culties have lead us to establish

the following de�nitions:

� De�nition: Certi�cation Instance: A certi�cation instance is a set of properties that can

be possessed by the type of part that will be certi�ed according to that instance.

� De�nition: Certi�ed Part: A part is certi�ed according to a given certi�cation instance if

it possess the set of properties prescribed by that instance.

� De�nition: Certi�cation: Certi�cation is the process by which it is established that a part

is certi�ed.

An important byproduct of this precise de�nition of certi�cation is that it provides a mechanism

for communication about part quality between the developer of a part and users of the part. Users

no longer have to question the quality of parts - certi�cation describes for the prospective user

exactly what can be expected of a part. When developing a part for placement in the library, it

is the developer's responsibility to show that the part has the properties required for that library.

When using a part, it is the user's responsibility to enquire about the precise set of properties that

the part has and ensure that they meet his or her needs.

These de�nitions appear to be of only marginal value because the prescribed properties are not

included. However, it is precisely this aspect that makes the de�nitions useful. The de�nitions have

three very valuable characteristics:

1. Flexibility: As many di�erent certi�cation instances can be de�ned as are required.

2. Generality: Nothing is assumed about the type of part to which the de�nitions apply.

3. Precision: Once the prescribed property list in the certi�cation instance is established, there

is no doubt about the meaning of certi�cation.

The properties included in a speci�c instance of certi�cation can be anything relevant to the

organization expecting to use the certi�ed parts. However, since preparation of reusable parts is

a major capital undertaking, it is inappropriate to include properties that are not essential. The

opposite circumstance is also a factor. If establishing a necessary system characteristic is facilitated

by the parts in the reuse library having a certain property, then that property had better be included

in the certi�cation instance.

Thus the key to the de�nition of any speci�c certi�cation instance is the use to be made of the

properties in the de�nition. The only justi�cation for the inclusion of a particular property in a
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speci�c certi�cation instance is that possession of that property by parts in a library contributes to

the establishment of useful characteristics in systems built from those parts.

We now have a general de�nition of certi�cation for reusable parts and a conceptual approach to

developing speci�c de�nitions as required. The key issues to be addressed in the area of certi�cation

are:

1. What system properties are common and of su�ciently high value that supporting them in a

reuse development environment is cost e�ective?

2. What techniques are required to permit the maximum exploitation of the properties of parts

in the establishment of the properties of a system?

3. What library structures are required to store the relatively complex entity formed from a part

and an associated set of properties?

4. Is there value in permitting library users to search based on both part semantics and required

certi�cation properties?

5. How does certi�cation according to the approach outlined here a�ect the economic models of

reuse?

6. Since it is clear that properties of parts based on testing will be included in certi�cation

de�nitions, what issues are raised in the area of testing parts? The di�culty of testing

artifacts such as Ada [Ada 83] generic units immediately comes to mind.

7. What e�ect does the adaptation of reusable parts have on the de�nition of certi�cation and

its exploitation?

8. Can the notion of certi�cation summarized above be applied successfully to parts other than

source code and it is similarly advantageous?

9. What would the instantiation of certi�cation look like for requirements or test-plan parts?

For software reuse to succeed in delivering a substantial improvement in programmer produc-

tivity requires progress in a number of areas. Part certi�cation is an important one.
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