
Issues in the Certi�cation

of Reusable Parts

John C. Knight

Department of Computer Science

University of Virginia

Thornton Hall

Charlottesville, VA 22903

knight@virginia.edu

Abstract

A substantial di�culties that is limiting reuse is a lack of perceived quality in the artifacts

being reused. Availability of a part with suitable functionality is not su�cient if the prospective

user does not trust the part and refuses to use it as a result. We present a de�nition of

certi�cation to deal with this situation and propose to exploit this de�nition to permit savings

during testing and maintenance.

Keywords: software reuse, part certi�cation, software reliability

1 Issues in the Certi�cation of Reusable Parts

We claim that one of the substantial di�culties that is limiting reuse is a lack of perceived quality

in the artifacts being reused. Although a software engineer may have a reuse library available, there

is frequently a reluctance to use it because of concerns about part quality. Essentially, the engineer

feels that without a lot of knowledge of a part, he or she would be better o� rebuilding it. That lack

of perceived quality is a detractor from reuse is an observation based only on anecdotal evidence

but appears to be the software-reuse manifestation of the \not-invented-here" syndrome.

The adjective certi�ed is sometimes used to describe parts that have been tested in some way

prior to entry into a library (e.g., [Lenz 87]. Testing parts prior to their insertion into a reuse library

is often claimed to be a productivity advantage. There is the vague expectation that building

software from tested parts will somehow make testing simpler or less resource intensive, and that

products will be of higher quality [Bass 87, Knig 92, Lenz 87]. Despite the various discussions of

testing and reuse, the term certi�ed is not formally de�ned in the reuse literature.

We are engaged in a research program that is addressing the issue of certifying reusable parts.

We advocate the development of software by reuse with the speci�c intent of establishing as many

1



of the required properties in the �nal product as possible by depending upon properties present in

the reusable parts. For this goal to succeed, a precise de�nition of certi�cation of reusable parts is

required. Given the informal notions of certi�cation that have appeared, it is tempting to think that

a de�nition of certi�cation should be in terms of some test metric or similar. The major di�culty

with this approach, no matter how carefully applied, is that any single de�nition that is o�ered

cannot possibly meet the needs of all interested parties. A second di�culty is that by focusing on a

testing-based de�nition, other important aspects of quality, such as e�cient execution performance

or ease of maintenance, are omitted from consideration. These di�culties have lead us to establish

the following de�nitions:

� De�nition: Certi�cation Instance: A certi�cation instance is a set of properties that can

be possessed by the type of part that will be certi�ed according to that instance.

� De�nition: Certi�ed Part: A part is certi�ed according to a given certi�cation instance if

it possess the set of properties prescribed by that instance.

� De�nition: Certi�cation: Certi�cation is the process by which it is established that a part

is certi�ed.

An important byproduct of this precise de�nition of certi�cation is that it provides a mechanism

for communication about part quality between the developer of a part and users of the part. Users

no longer have to question the quality of parts - certi�cation describes for the prospective user

exactly what can be expected of a part. When developing a part for placement in the library, it

is the developer's responsibility to show that the part has the properties required for that library.

When using a part, it is the user's responsibility to enquire about the precise set of properties that

the part has and ensure that they meet his or her needs.

These de�nitions appear to be of only marginal value because the prescribed properties are not

included. However, it is precisely this aspect that makes the de�nitions useful. The de�nitions have

three very valuable characteristics:

1. Flexibility: As many di�erent certi�cation instances can be de�ned as are required.

2. Generality: Nothing is assumed about the type of part to which the de�nitions apply.

3. Precision: Once the prescribed property list in the certi�cation instance is established, there

is no doubt about the meaning of certi�cation.

The properties included in a speci�c instance of certi�cation can be anything relevant to the

organization expecting to use the certi�ed parts. However, since preparation of reusable parts is

a major capital undertaking, it is inappropriate to include properties that are not essential. The

opposite circumstance is also a factor. If establishing a necessary system characteristic is facilitated

by the parts in the reuse library having a certain property, then that property had better be included

in the certi�cation instance.

Thus the key to the de�nition of any speci�c certi�cation instance is the use to be made of the

properties in the de�nition. The only justi�cation for the inclusion of a particular property in a

2



speci�c certi�cation instance is that possession of that property by parts in a library contributes to

the establishment of useful characteristics in systems built from those parts.

We now have a general de�nition of certi�cation for reusable parts and a conceptual approach to

developing speci�c de�nitions as required. The key issues to be addressed in the area of certi�cation

are:

1. What system properties are common and of su�ciently high value that supporting them in a

reuse development environment is cost e�ective?

2. What techniques are required to permit the maximum exploitation of the properties of parts

in the establishment of the properties of a system?

3. What library structures are required to store the relatively complex entity formed from a part

and an associated set of properties?

4. Is there value in permitting library users to search based on both part semantics and required

certi�cation properties?

5. How does certi�cation according to the approach outlined here a�ect the economic models of

reuse?

6. Since it is clear that properties of parts based on testing will be included in certi�cation

de�nitions, what issues are raised in the area of testing parts? The di�culty of testing

artifacts such as Ada [Ada 83] generic units immediately comes to mind.

7. What e�ect does the adaptation of reusable parts have on the de�nition of certi�cation and

its exploitation?

8. Can the notion of certi�cation summarized above be applied successfully to parts other than

source code and it is similarly advantageous?

9. What would the instantiation of certi�cation look like for requirements or test-plan parts?

For software reuse to succeed in delivering a substantial improvement in programmer produc-

tivity requires progress in a number of areas. Part certi�cation is an important one.

References

[Bass 87] Bassett, P.G., \Frame-Based Software Engineering", IEEE Software, July, 1987.

[Knig 92] Knight, J.C., \Certi�cation of Reusable Parts" , submitted to ISQE 92, March, 1992.

[Lenz 87] Lenz, M., H.A. Schmid, and P.F. Wolf, \Software Reuse Through Building Blocks" ,

IEEE Software, July, 1987.

[Trac 87] Tracz, W., \Software Reuse: Motivators and Inhibitors", Proceedings of COMPCON S'87,

1987.

3



[Ada 83] U.S. Department of Defense, Ada Joint Program O�ce, Reference Manual For The Ada

Programming Language, ANSI/MIL-STD-1815A, January, 1983.

2 About the Author

John C. Knight is an associate professor of computer science at the University of Virginia. Before

joining the University of Virginia in 1981, he was with NASA's Langley Research Center. His

research interests center on developing techniques for building software for safety-critical systems.

To that end, he is undertaking a research project in certi�cation of reusable parts with a view to

exploiting reuse to support software reliability.

4


