
Confessions of Some Used-Program Clients

�

Joseph E. Hollingsworth

Bruce W. Weide

Stuart H. Zweben

Department of Computer and Information Science

The Ohio State University

2036 Neil Avenue Mall

Columbus, OH 43210

Tel: 614-292-1517

Email: weide@cis.ohio-state.edu

Abstract

In the past, claims have been made that one can expect improved software quality and

higher programmer productivity by faithful application of abstraction, encapsulation and lay-

ering (A/E/L). In an e�ort to explore the e�ects of A/E/L in the context of reusable software

components, we conducted an empirical pilot study using a class of graduate and upper-division

undergraduate students. We present some statistical results concerning the e�ects of A/E/L

based on the data collected by the study.

Keywords: education, guideline development, metrics, reusable software components

1 The Problem

Many respected software engineers (e.g., [Parnas 72]) have long argued that potentially signi�cant

quality and productivity gains can be achieved by faithful use of abstraction, encapsulation, and

layering (A/E/L). In this approach, higher-level parts of the system are layered on top of lower-level

encapsulated abstractions. The claimed bene�ts stem largely from separation of concerns between

a component's implementer and a component's client. The component implementer needs to un-

derstand only the abstract interface, not its use by the client; the client can reason abstractly about

higher layers of software knowing only the abstract interface, not its implementation. If underly-

ing representation or algorithmic details change (e.g., to improve performance) the higher layers

�

This material based upon work supported by the National Science Foundation Grant No. CCR-9111892

1

remain stable. This modularity property is especially important when the lower-level abstractions

are reusable software components [Ernst 91, Weide 91].

In our experience as \used-program clients" (apologies to [Tracz 88]), we have noticed that

A/E/L principles are not faithfully observed by some used-program salesmen. There are two main

problems:

1. Some component libraries do not use A/E/L principles as much as they could, within those

libraries. For example, [Booch 87] represents a \map" abstraction as a hash table using

chaining for collision resolution. But he codes from scratch the lists that implement chains.

He does not reuse the list package.

2. The designs of components sometimes interact with each other and with certain language

features to make it di�cult for clients to respect abstraction while layering new functionality

on top of existing components. The Booch components again provide an example. Ada's

restriction on the mode for parameters to functions, mixed use of private and limited private

types, and a variety of details of the component designs combine to make it surprisingly di�-

cult for clients of these components (and all others we know of) to observe A/E/L principles

[Hollingsworth 91]. It is, therefore, usually considered fortunate (although it probably should

not be [Muralidharan 90b]) that many component libraries are in source form. This makes it

possible for clients to extend and change component interfaces to suit their own needs|not

by layering on top of encapsulated abstractions but by directly modifying them.

Why should such an apparently well-established principle of software engineering|especially one

that seems to form the foundation for software reuse|still be so elusive in practice? We suggest

there are two main reasons:

1. There are some obvious disadvantages to A/E/L that temper the claimed advantages. The

most important is that performance su�ers. Secondary operations implemented by layering

involve extra procedure call overhead. This is usually a small constant-factor performance

penalty that can be reduced with aggressive inlining and other compiler optimizations; yet

it may be important in some applications. But secondary operations also may be slow be-

cause the primary operations provided by an underlying component do not o�er the proper

abstract functionality, with the right performance, to permit a layered implementation to

execute as quickly as if it were permitted to access underlying representations. This can be

an order-of-magnitude performance penalty that the client cannot overcome except by vio-

lating abstraction|prying open an encapsulated component and delving into the guts of its

implementation.

2. While A/E/L may have many software engineering bene�ts in principle, apparently there are

no controlled empirical studies that document measurable quality or productivity bene�ts of

using these techniques. In making a trade-o� between the analyzable and measurable perfor-

mance penalties associated with faithful adherence to A/E/L, and the largely hypothetical

and unquanti�ed quality and productivity gains, a designer or manager is clearly tempted

to opt for performance. This is particularly true where the programming language contains

\features" such as code inheritance that seem to support layering, but that actually encourage

violation of abstraction and encapsulation [LaLonde 89, Muralidharan 90a, Raj 90].

2

We are impressed by the importance of the second point in many informal discussions with soft-

ware practitioners. Some claim to see the bene�ts of remaining completely faithful to A/E/L. They

blame short-term thinking by management, in
exible deadlines, unrealistic performance objectives,

and a variety of other factors, for violations of principles. The true skeptics, though, harbor sincere

doubts about the claimed advantages of A/E/L in practice. They really would like to see some

empirical evidence that a vigilant adherence to A/E/L actually \works."

Having contributed already to the hypothetical academic arguments for essentially complete

allegiance to A/E/L principles in design of reusable software components [Harms 91, Weide 91],

we considered how we might in
uence potential industrial collaborators to undertake a realistic

empirical evaluation of the bene�ts of this approach. During summer 1991 we used a class of 18

graduate and upper- division undergraduate students to conduct an empirical pilot study of some

productivity and quality e�ects of A/E/L in the context of reusable software components. The main

purpose of this paper is to present preliminary results of that study, which support our position

that observing A/E/L principles is an important factor in obtaining the claimed productivity and

quality bene�ts of reuse.

2 The Study

The class in question was called \Software Components Using Ada." The lectures heavily empha-

sized the trade-o�s evident with A/E/L principles, and presented a detailed engineering discipline

for designing, formally specifying, and correctly and e�ciently implementing Ada generic packages.

We used [Booch 87] as a supplementary text and did one project using the Booch components.

But the majority of the course used our own component designs and our own engineering discipline

[Harms 91, Weide 91]. Several programming assignments illustrated main points from the lectures.

On some of the assignments, we asked the students to keep track of the e�ort they spent on var-

ious activities (which we de�ned as carefully as possible), and on the number of bugs that caused

run-time errors that they found and �xed.

Two of the assignments were particularly relevant to the point of this paper. In the �rst, we

provided an implementation of a generic \unbounded queue" package that exported the standard

primary operations: enqueue, dequeue, and a test for emptiness. We asked the students to add

four secondary operations: copy, clear, append (concatenate two queues), and reverse. We formally

speci�ed all the operations and discussed them in class so there would be no doubt as to their

intended semantics. We asked the students to implement these secondary operations using two

di�erent methods: (a) by layering them in a new generic package on top of the provided queue

abstraction, and (b) without layering, i.e., by directly modifying the underlying generic package to

export the four additional operations. Half the class (nine students chosen at random) did part (a)

�rst; the other half did part (b) �rst. Below we call these Group A and Group B, respectively.

For the next assignment, we provided a standard solution to part (b) of the above assignment,

and asked the students to change the underlying representation of queues. This required that they

redesign and recode the implementations of the original primary operations as well as the four

secondary operations. We asked that all the students �rst reimplement the primary operations,

then the secondary operations.

For both assignments we asked the students to keep careful records of the time they spent in

3

designing/coding, testing, and debugging/recoding each operation. We also asked them to report

how many bugs they �xed in each operation. We emphasized the importance of being internally

consistent in keeping and reporting this data, and stressed that grades in the course would have

nothing to do with the reported numbers. After discussing the study with each of the students

before and after the assignments, we found no reason to believe that the results were signi�cantly

a�ected by variations in reporting methods, by collaboration, by severe outliers, or by latent fears

that honest e�ort/bug data would in
uence course grades.

3 The Results

We have just started to analyze the data and cannot yet report everything that might be lurking in

them. We plan to document statistical details of the following (and other results) in a future paper.

Assignment 1

Examining average total e�ort data for the two parts of the assignment (Table 1), we noted that

the students overall spent less than half as much total time on the layered implementation as on

the one without layering. Even those who did part (a) �rst spent less total time on the layered

implementation than on the non-layered one. Looking at just design/coding e�ort gave a similar

picture.

Table 1:

Average Total Times for Assignment 1

Group A Group B All

(Layered First) (Direct First) Students

Layered 145 57 101

Direct 182 261 222

Total 327 318 323

To test the statistical signi�cance of these observations, we performed an analysis of variance

[Hicks 73], looking for the signi�cance of three primary e�ects on the total e�ort required for the

assignment: (1) the e�ect due to the treatment, i.e., the di�erence in times to implement the

secondary operations with layering and without layering; (2) the e�ect due to the group, i.e., the

e�ect, on total time to do the two implementations, of the order in which layering and non-layering

were done; and (3) the interaction e�ect between treatment and order, i.e., the potential \learning"

e�ect that completing the �rst implementation had on the time to do the other implementation.

Our nested-factorial model also included the e�ect due to students within groups and the interaction

e�ect between students and treatments, but these e�ects were untestable because we had only one

point per student for each level of treatment. In this model, e�ects (1) and (3) are tested against

the interaction between students and treatments, while e�ect (2) is tested against the student e�ect.

We looked for F values that were signi�cant at the 5% level; with 1 and 16 degrees of freedom, the

minimum signi�cant F is 4.49.

We found (Table 2) that e�ects (1) and (3) were statistically signi�cant, and that e�ect (2) was

not signi�cant. That is, non-layering took signi�cantly more total time than layering. Furthermore,

4

there was an apparent learning e�ect in the sense that the total time spent on the �rst treatment

condition was signi�cantly greater than that for the second treatment condition. We found no

signi�cant di�erence between the two groups in the total time to do both parts of the assignment.

Table 2:

Analysis of Variance for Total Time for Assignment 1

Source/E�ect df Sum of Squares Mean Square F

Treatment (layering) 1 130,321 130,321 23.70*

Group (order) 1 160 160 0.02

Treatment X Group (learning) 1 63,001 63,001 11.46*

Student (within Group) 16 149,566 9,348

Treatment X Student 16 87,970 5,498

� Signi�cant at the 5% level, i.e., F > F

1;16

= 4:49.

These data indicate a measurable productivity advantage when secondary operations are imple-

mented without violating A/E/L principles. Several students noted in their lab reports that it was

far easier to think abstractly about queues when designing and coding the secondary operations

than it was to worry about the nodes and pointers of the underlying representation. This seems

to be the most reasonable explanation of the observed data|exactly what A/E/L advocates might

have predicted.

The lack of a signi�cant e�ect due to order is also plausible from common sense. While there

is reason to expect that something about the task will be learned from the �rst treatment con-

dition, in fact the mode of thinking, algorithms, and code for layering and non-layering are quite

di�erent. Therefore, the total time to complete both parts of the assignment should (intuitively)

be independent of which one was done �rst. Indeed, this is what we observed.

We also found a signi�cant di�erence in the quality of the code, as measured by the number

of bugs causing run-time errors that were found and �xed before testing revealed no more. The

layered implementations had signi�cantly fewer bugs than the non-layered ones. Based on the

Mann-Whitney U Test [Downie 65], we were able to reject the hypothesis of no di�erence between

the number of bugs in the layered and non-layered implementations, at the 5% level.

Assignment 2

In the second assignment the students undertook a typical maintenance task: change the repre-

sentation of an abstraction and all the code that depends on it. Using layering, as in part (a) of the

�rst assignment, means that the code for the secondary operations can be written once and certi�ed

to be correct. A change to the underlying representation costs only as much as changing the primary

operations. The students, however, also had to change the secondary operations, because they were

implemented without layering. It was this extra|and with A/E/L principles, unnecessary|e�ort

that the assignment was intended to help us measure.

We found that the students averaged spending about half their total redesign and recoding

e�ort on the four secondary operations. However, they had to �nd and �x an average of two-

thirds of all their bugs in these operations. These data have such large con�dence intervals that

5

we hesitate to draw any serious conclusions from a small sample and one example. Nonetheless,

it is entirely plausible that secondary operations generally should be more di�cult to get right

than primary operations. Secondary operations perform more complicated manipulations than the

primary operations, which are chosen precisely because they are \primitive."

4 Status and Recommendations

We plan to examine more carefully the e�ort and bug data obtained in this small study. We also

hope to re�ne it and run a study again next year with di�erent students. But the preliminary results

suggest that a commercial software developer might do well to adhere carefully to A/E/L principles

on a realistically large software project, collecting as much similar and related data as possible, in

an attempt to document a convincing empirical case for the productivity and quality advantages

of A/E/L. By knowing the cost of design and coding time, maintenance activities, etc., and having

estimates of the di�erent amounts of time involved in these tasks, a manager should be able to

make a more informed trade-o� between software engineering costs and run-time performance costs

of design decisions.

6

References

[Booch 87] Booch, G., Software Components with Ada, Benjamin/Cummings, Menlo

Park, CA, 1987.

[Downie 65] Downie, N.M., and Heath, R.W., Basic Statistical Methods, 2nd ed., Harper

& Row, New York, 1965.

[Ernst 91] Ernst, G.W., Hookway, R.J., Menegay, J.A., and Ogden, W.F.,\Modular Ver-

i�cation of Ada Generics," Comp. Lang. 16, 3/4 (1991), 259-280.

[Harms 91] Harms, D.E., and Weide, B.W., \Copying and Swapping: In
uences on the

Design of Reusable Software Components," IEEE Trans. on Software Eng.

17, 5 (May 1991), 424-435.

[Hicks 73] Hicks, C.R., Fundamental Concepts in the Design of Experiments, Holt, Rine-

hart and Winston, New York, 1973.

[Hollingsworth 91] Hollingsworth, J.E., Weide, B.W., and Zweben, S.H., \Abstraction Leaks in

Ada," Proc. 14th Minnowbrook Workshop on Software Eng., Blue Mountain

Lake, NY, July 1991.

[LaLonde 89] LaLonde, W.R., \Designing Families of Data Types Using Exemplars," ACM

Trans. on Prog. Lang. and Syst. 11, 2 (1989), 212-248.

[Muralidharan 90a] Muralidharan, S., and Weide, B.W., \Should Data Abstraction Be Violated

to Enhance Software Reuse?," Proc. 8th Ann. Natl. Conf. on Ada Tech., AN-

COST, Inc., Atlanta, GA, Mar. 1990, 515-524.

[Muralidharan 90b] Muralidharan, S., and Weide, B.W. \Reusable Software Components = For-

mal Speci�cations + Object Code: Some Implications," 3rd Annual Work-

shop: Methods and Tools for Reuse, Syracuse Univ. CASE Center, Syracuse,

NY, July 1990.

[Parnas 72] Parnas, D.L., \On the Criteria to be Used in Decomposing Systems into

Modules," CACM 15, 12 (Dec. 1972), 1053-1058.

[Raj 90] Raj, R.K., \Code Inheritance Considered Harmful," 3rd Annual Workshop:

Methods and Tools for Reuse, Syracuse Univ. CASE Center, Syracuse, NY,

July 1990.

[Tracz 88] Tracz, W.J., ed., Tutorial: Software Reuse: Emerging Technology, IEEE Com-

puter Society Press, Washington, DC, 1988, 92-95.

[Weide 91] Weide, B.W., Ogden, W.F., and Zweben, S.H., \Reusable Software Compo-

nents," in Advances in Computers, v. 33, M.C.Yovits, ed., Academic Press,

1991, 1-65.

7

Biographical Data

Joe Hollingsworth holds an undergraduate degree from Indiana University and a master's degree

from Purdue University. Before returning to school as a Ph.D. candidate at The Ohio State Uni-

versity, he worked at Texas Instruments. He has also consulted for Battelle Memorial Institute on

issues of software design in Ada. In his recent research at OSU he has developed a compiler, linker,

and run-time system for RESOLVE, and has worked on a set of engineering principles that can be

used to develop generic reusable software components in Ada.

Bruce W. Weide is Associate Professor of Computer and Information Science at The Ohio State

University. He received his B.S.E.E. degree from the University of Toledo in 1974 and the Ph.D. in

Computer Science from Carnegie Mellon University in 1978. He has been at Ohio State since 1978.

His research interests include various aspects of reusable software components and software engi-

neering in general: software design-for-reuse, formal speci�cation and veri�cation, data structures

and algorithms, and programming language issues. He has also published recently in the area of

software support for real-time and embedded systems.

Stuart H. Zweben, a 1974 Ph.D. graduate of Purdue University, is Associate Professor of Computer

and Information Science at The Ohio State University. He is a leader in the �eld of software metrics

and has published extensively in the areas of software testing, software engineering methodology,

software understandability, and design of e�cient data structures. His current research interests

include software reuse and software testing issues, as well as software engineering tools and methods,

and evaluation techniques for measuring the e�ects of such tools and methods.

8

