
Increasing Reusability through Architectural Design

Kim Harris, Software Reuse Program Manager

Hewlett Packard Company, Corporate Engineering

1801 Page Mill Rd., MS 18DG, Palo Alto, CA 94304

Telephone 415-857-7771, FAX 415-857-2631

email: kimh@hpcea.ce.hp.com

Abstract

The design of good, reusable architectures is essential to e�ective software reuse among

applications in a product family. The goals of an architecture improvement process and good

architectures are presented. An example of a reusable architectural design is described. Both

the process and artifacts of the architecture are included.

Keywords: domain analysis, reusable architectures, object-oriented analysis, object-oriented

design

1 The Hewlett Packard Software Reuse Program

The objective of the Software Reuse program at Hewlett Packard is to institutionalize software

reuse in selected business areas within the company. The program has a small sta� of people at a

central Corporate Engineering organization, and it works with several pilot projects in operating

divisions. We are emphasizing reuse across a vertical span of domains from the application domain

through low-level implementation domains. We are also focusing on external library, black box reuse

of complete workproducts which have been explicitly designed for reuse. The design of software

architectures for speci�c application domains and product families is key to a successful reuse

program in a large company like HP.

2 Software Architecture Objectives

To improve the state of architecture designs, we need:

� quality objectives for a software architecture

� metrics and review processes for evaluating architectures

1

� graphical notation systems for documenting and communicating architectures

� processes for designing architectures.

Some quality objectives of good software architectures include:

� complete functional coverage of application domain(s)

� consistent treatment of functions within the architecture

� exibility to adapt to di�erent products in an application domain

� clean separation of responsibilities between components to ensure that side e�ects are mini-

mized and documented, protocols are functionally focused, and the coupling between modules

is loose and cohesion is strong

� loose constraints that do not assume or preclude lower domain decisions such as: concurrency,

data structures and algorithms, i.e., allows such decisions to be made, evaluated and changed

without changing the architecture

� measurable and predictable performance, e�ort and generality.

There are several approaches to achieving these objectives. One is a top-down process where

architectural principles are derived from the objectives. Another is a bottom-up approach which

captures, classi�es and catalogs architectural styles, cliches and notations and then synthesizes

common abstract principles with reproduce the cataloged artifacts. Both approaches are important.

3 An OO Architecture for Instrument Measurement and

Control

An example of an interesting software architecture comes from the ATUX project recently designed

at HP [Harr 91]. This paper will describe both the key elements of the architecture and the process

used to design it.

First, the project team performed a domain analysis on the applications developed by the In-

strumentation Department of the Optoelectronics Division at Hewlett Packard Co. The department

builds Test and Measurement (T&M) systems that test optoelectronic products manufactured in

HP factories. A scope of 80

The domain analysis consisted of analyzing three examples in the application family: the simplest

(a single LED), a representative middle case (a multicharacter display assembly), and the most

complex case (an LED replacement for a laser engine in a \laser printer"). The engineers in the

project team had only partial domain knowledge. Additional domain experts were interviewed to

complete the domain analysis.

An example of a product in the middle category is described in Figure 1.

Entity Relationship (ER) diagrams were used as domain models. An object-oriented analysis

and design process was followed which was adapted from the OOA process by Mellor and Shlaer

2

A 4 digit LED display assembly. Each digit has 7 LED segments.

Physical Assembly

Display _____________________________

| 1 | __ | __ | __ | __ |

| | /_/ | /_/ | /_/ | /_/ |

| 4 | /_/ | /_/ | /_/ | /_/ |

Digit |______|______|______|______|

| 1

|

| 7

Segment

Figure 1

[Shla 88]. In the ER diagrams, the entities are objects (instances) and most of the relations are

\uses-a." The main goal of the modeling was to organize solution-space functions into layers in order

to facilitate interoperability of modules in each layer and the reuse of components. See Figures 2

and 3 for the domain models for the simplest and most complex cases.

4 Responsibility-based layers

From the domain models, class hierarchies for the application domain classes were identi�ed. Each

layer had a di�erent purpose (functionality), temporal duties, and persistence of its data. These

properties are shown in Figure 4. The abbreviation UUT stands for \Unit Under Test" (i.e., the

device on which measurements are being made).

The lowest-level layer contains the instrument drivers. There is a 1:1 correspondence between

drivers and physical instruments. The next higher layer is the result of a design abstraction: the

virtual instrument layer. It allows application domain measurements to be made by combinations

of more primitive hardware instruments. The UUT Topology layer is actually a variable number

of sub-layers which have the responsibility of agglomerating measured data. The classes in these

layers mirrored the topology of the products being measured. Refer back to Figure 1 for an example.

The top layer(s) provided management of the measurement sequencing and communication to other

tasks. The interfaces between layers were de�ned as architecture standards for this application, and

they were implemented using Abstract Base Classes (ABC's). An example of this class design is

shown in Figure 5.

Following the design of the application domain classes, lower domain classes (such as service

and computer science classes) were added to the design. They were mapped onto a client-server

architecture containing three nodes as shown in Figure 6.

3

Layer Purpose Data persistence

Test Test sequence Whole UUT

management Pass/fail decision Fetch/store data base

UUT Topology Electrical Whole UUT

connectivity

Hierarchical Local to component of UUT

composition

Geometry, location

Comparing limits

Virtual Set measurement Each measurement

Instrument conditions

Read results

Timing: trigger,

intervals

Instrument topology

Calibration: Calibration: whole

engineering units session

Instrument Instrument modes, Each measurement by

Drivers limits, controli instrument

Communication with

each instrument

Error detection/

recovery

Calibration: Calibration: whole

engineering units session

Hardware

Instruments

Figure 4

4

Test User Interface

Subsystem Subsystem

Process Process

\ /

\ /

\ /

\ /

\ /

\ /

Data Base

Subsystem

Process

Figure 6

5 Parasite Classes

Another architectural technique used was the design and application of parasite classes. Parasite

classes were used to perform functions such as persistence, real-time control and tracing and debug-

ging. Parasite classes have the same interface and protocol as the main application classes they can

be attached to. They were derived from the ABC's that de�ned the layer interfaces. They allowed

optional functionality to be included without changing the application classes. For example, to

add Unix real-time control to an application class, the appropriate parasite class was dynamically

linked in front. Any messages sent to the application class were �rst received by the parasite. It

performed its function (i.e., change the real-time priorities), then passed the messages along to the

application class.

To facilitate rapid con�guration of all classes including the optional parasites, a glue language

utility was created that controlled the construction of all instances and initialized attributes and

pointers to complete a running system.

6 Conclusions

The �rst application product developed met expectations, and most of the architectural goals were

archieved. The interfaces between most layers were �xed for all products in the application family.

However, the team was unable to de�ne a single interface between the lowest two layers because

of performance requirements. The reusability of the architecture has not been veri�ed because the

software platform has not yet been used to develop multiple application products.

References

[Harr 91] Harris, K.R., Using Object-Oriented Methods to Develop Reusable Software for Test &

5

Measurement Systems: a Case Study, Proceedings of the First International Workshop on

Software Reusability, SWT Memo # 57, Universitat Dortmund, June 1991

[Shla 88] Shlaer, Sally and Mellor, Stephen, \Object-Oriented Systems Analysis, Modeling the

World in Data", Yourdon Press, 1988.

7 About the Author

Kim Harris is the manager of Hewlett-Packard's corporate-wide software reuse program. He has

over 20 years experience in the areas of computer software, hardware, architecture, training and

management. Mr. Harris has worked with microcomputers, minicomputers and supercomputers.

He has developed scienti�c applications, real-time applications, operating systems, compilers and

graphics software. He has published over 20 papers in the technical and popular press. He received

an M.S. degree from Purdue University and a B.S. degree in Physics from Louisiana State University.

His current interest and research areas include: software engineering, process, architecture,

metrics, reuse, management, education, object oriented programming, and domain analysis.

6

