
Bus-Based Kits for Reusable Software

Martin L. Griss

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94301

415-857-8715, griss@hplabs.hp.com

Abstract

Hewlett-Packard's interest in a reuse-based software construction process involves both a

corporate reuse program and research into methods and technology. We describe research

in domain-speci�c, architecture-driven, reuse-based software construction technology, speci�-

cally the notion of domain-speci�c kits. This work is explored in the context of distributed

information management environments.

Keywords: software reuse, software bus, software construction kits, corporate reuse pro-

gram, domain-speci�c reuse, distributed applications

1 Introduction

Hewlett-Packard's great interest in signi�cantly improving its software process has led to several

software initiatives, including a Corporate Reuse Program to make software reuse a systematic part

of HP's software process for the 1990s[7]. This program is a broad, coordinated e�ort involving

management, process, technology, education and research, for HP divisions developing domain-

speci�c (or application speci�c) common architectures, frameworks and reusable components for

families of related products, such as embedded software for instruments, printers, chemical and

medical systems.

HP Labs and Corporate Engineering are developing a domain-speci�c reuse process for develop for

reuse, develop with reuse, and workproduct management[4]. In this context, domain refers to set (or

subset) of systems that share a signi�cant number of common user requirements, and admit of com-

mon implementation(s). Di�erent domains might be best implemented using di�erent technologies,

di�erent tools, di�erent architectures, and (hence) di�erent development processes. For example,

1



the use of a 4GL for the domain of certain �nancial problems might naturally lead to much more

of a \prototyping" mode of developing. These guidelines and methods involve domain analysis, the

de�nition of an architectural framework and components, and the construction, management and

integration of these components. Corporate Engineering focuses on process, education and best

practices, while HP Labs concentrates on research in processes, tools and environments.

This paper summarizes HP Labs research in component-oriented construction of novel, distributed

applications, using kits, software-bus frameworks, and hypertext. Related work includes user-

programmable UI components, OO methods and domain analysis.

2 New ways of building systems: Reuse based kits

Application development has become more complex, involving novel, distributed systems, multi-

media, and support for collaboration, information sharing and manipulation. Use of complex,

standard, object-oriented environments and interfaces, the desire for more end-user programmability

and customizability, and the pressure to radically decrease time to market, require new approaches.

Several technologies and methods must be used in concert to produce domain-speci�c application

construction and execution environments, such as reuse, frameworks, generic applications, (reuse-

based) prototyping, generators, user-programming languages, mega-programming, etc.

Application developers need kits of extensible components that can be combined into \domain-

speci�c, `yet still somewhat generic' applications", i.e., almost complete, customizable applications

(or application skeletons) that need to be further tailored, or completed, by the end-user or local

programmer. A kit will comprise several compatible sub-systems: a reuse library, a glue/extension

language, a set of rules and constraints, a component integration framework, and supporting de-

velopment/customization environment. Often a (partially domain speci�c) generic kit is extended

with additional domain speci�c components and constraints, and released as a tailorable, domain

speci�c kit. Examples are domain-speci�c stacks for (generic) HyperCard, which are still extensible

via HyperTalk. Similar are the domain-speci�c AutoCAD drafting packages (e.g. landscaping),

written in AutoLisp.

We are developing our �rst kit, using an object-oriented software bus architecture[2, 10, 9, 11]

to produce distributed applications that are easy to customize, extend, and combine to produce

application-oriented environments. Later, we will explore to what degree several kits can be them-

selves built from common kit-building technology.

3 Message based component integration

HP's CASE integration platform (SoftBench)[3] loosely couples independent software tools into

powerful, customizable programming environments. Underlying control-integration technology for

2



this `mega-programming' [12] architecture is a Broadcast Message Server (BMS), and support to

monitor or debug messages, and to encapsulate existing tools. Each tool (an independent `mega'-

component), registers its services and interests as message string patterns. Running tools broadcast

their state or needs, or react to such messages, by starting other tools, logging results, or checking

consistency. HP also uses BMS for other distributed applications.

Extending the BMS idea, we have developed a software bus framework (Bart)[2] for control and

data integration, which provides a communication substrate that ALL components must use for data

exchange and control coordination. A Bus Manager is invoked to establish communication paths

between components, so that (subject to security) they can be monitored. Bart has three layers

of service: multi-cast transport (synchronous and asynchronous) of typed messages, a database-

like view mechanism for components to publish and subscribe to various information subsets and

connections, and software glue that describes connections and message data-models. Components

use ports (data and control) to permit a class of objects and its methods to be distributed across

a set of components. Each component is event based, with a top loop waiting or polling for several

input sources. Bart routes events via the control ports. These mechanisms make it easier to write

components independently, and then combine them and their (incompatible) data-models with

appropriately customized behavior.

4 Novel, distributed system prototypes

We have independently constructed several systems, with related but partially incompatible tech-

nology. Each system is evolving in similar directions. We would like to decrease redundant work

and increase synergy.

Kiosk[5, 6] is a workstation-based single-user general-purpose hypertext framework built on Unix,

C++ and InterViews[8]. Kiosk manipulates Unix �le-based information, and interfaces well to other

Unix tools and shell-scripts. It is a 
exible base for experimenting with hypertext-based reuse tools

and textual information management. Kiosk manages software workproducts, reusable libraries

(e.g. InterViews) and other textual information (catalog entries, manual pages, header �les, mail

messages, etc.).

Kiosk has 3 major parts: a semantic layer implementing a hypertext-engine, with persistent, typed

nodes and links, mapped to Unix �les; a graphical and textual browser/editor built upon a general

presentation layer; and, a schema-driven hypertext builder, which uses a structural description, a

speci�cation of input �les and types, and rules (parsers and pattern-matchers) to identify and link

`interesting places' between �les. The layers communicate via a noti�cation manager which registers

dependencies between semantic objects and (several) presentation objects to ensure the consistency

of multiple views of the same objects.

We have built a small-team email-based Group Memory using Kiosk. Arriving email from team

members, or external sources, is incrementally linked into a hypertext. It is mechanically processed

3



for interesting places to link to, and for people to inform. It is put on a `new' list, and an announce-

ment sent to each person, to be displayed in an action panel on his workstation. The email can then

be read, marked as seen, further linked into the global or private hypertext, etc. Multi-user aspects

in the �rst prototype were handled via several scripts and processes attached to the noti�cation

manager in each Kiosk. While showing the correct behavior, this has proven clumsy and unreliable.

We are restructuring Kiosk to use Bart so that multiple interacting/coordinated browser/editors

can share one hypertext-engine (semantic layer). Our initial steps have been to connect Bart to

the Kiosk noti�cation manager, by introducting a liaison presenter, which appears as a presenter

to the noti�cation manager, but can accept socket based connections from the software-bus. We

have interfaced both InterViews and Motif to Bart, and had to deal with di�erences in UI drivers

and issues of `who is in charge', `where do events come from', and event loop con
icts.

The Physician's Workstation (PWS) is a multi-component environment to help several physicians

and supporting functions deal with their daily activities. Independent components implemented

in C for each activity (appointment calendar, patient record, prescription writer/drug interaction

analyzer, lab record alert) interact via BMS and Unix sockets. Key components are a knowledge-

base (KB), editor and global patient record database. Rules and facts describing patients, drugs and

symptoms are recorded and modi�ed here; messages from components are monitored by the KB,

and inferences provide constraints and guidance to the physician. Issues involve the customizability

of the systems to �t local preference, system con�guration, security, etc. We have implemented

a Bart model of the PWS. Originally, we tried simple re-engineering, replacing BMS calls with

Bart calls. Instead, it was easier to �rst produce a template (an inner, component architecture) to

correctly set up the appropriate components and ports, and then quickly embelish to emulate the

behavior and communication patterns of the PWS. Within this PWS-model skeleton, we can now

add more complete PWS functionality to each component.

The Matisse[1] team programming environment is a distributed, object-oriented, rule-based system

for small teams of software developers. It manages �ne-grain software representations as a software-

hypertext and provides support for software process modeling and enactment. Matisse consists of

several processes written in C. A central global database server encapsulates a relational database

to present a multi-user low-level persistent object server. Developer workstations have several

tool processes (editor, browser, etc.) connected to a local, active (AI) database. Rules (in SE-

KRL, a software-engineering knowledge representation language) manage a local cache of objects,

handling loading, 
ushing and locking of the cache and coordination between users and server,

keeping multiple views consistent, etc. The local data-base also implements higher-level structured

data-types, and performs rule-based computations, using a LISP-based forward chaining inference

engine.

5 User progammable User Interface components

Driven by the goal of user-programmability, a companion project (ACEkit)[13, 14] has built a variety

of higher-level, user-extensible UI `widgets' in InterViews. Each of these widgets has associated

4



with it a data-structure (a descriptor) that can be interrogated at execution time to determine

parameters, modify presentation options, etc. Several basic InterViews objects are also wrapped

with a descriptor (via multiple-inheritance). These descriptors are then used with interactive tools

and interpreted glue language to permit simple applications to be extended and customized by the

end-user using a combination of visual and procedural mechanisms. Widgets built so far are a

general purpose table object (like an extended spreadsheet entity), a graph object (DAG and tree),

and several editors.

6 Next steps

Each of the above systems has related technology, and similar needs for distribution, display, co-

ordination, information sharing, locking, hypermedia, etc. We will extract useful technology and

re-engineer it into bus-compatible components, to produce a common distributed, object-oriented

hypertext platform. We also contemplate including ACE widgets and extension technology into a

UIMS component for the environment. We will then reconstruct and extend several of these appli-

cations, and test our ideas on extensiblity and application compatibility by implementing additional

components. We will complete the replatforming of Kiosk and Matisse on Bart. We are repackaging

our software components for a set of useful components in the software construction/engineering

domain. We will also work with pilot(s) to investigate applicability to other domains.

7 Acknowledgements

This work would not have been possible without the energy, insight, support and comments of

members of the HP Labs Software Construction and Evolution projects, particularly Brian Beach,

Mike Creech, Dennis Freeze, Jon Gustafson, Joe Mohan and Kevin Wentzel, and our summer

students, Mark Gisi and Mark McAuli�e.

8 Biography

Martin L. Griss is Principal Laboratory Scientist for Software Engineering at Hewlett-Packard

Laboratories, Palo Alto. He leads research on software reuse, software-bus frameworks, and hypertext-

based reuse tools. He works closely with HP Corporate Engineering to systematically introduce

software reuse into HP's software development processes. He was previously Director of HP's Soft-

ware Technology Laboratory, researching expert systems, object-oriented databases, programming

technology, human-computer interaction, and distributed computing. He serves on HP software

engineering councils and is a consultant to HP management on software engineering. Before that,

he was an Associate Professor of Computer Science at the University of Utah, working on computer

5



algebra and portable LISP systems (PSL). He has published numerous papers, and was an ACM

national lecturer. He received a Ph.D. in Physics from the University of Illinois in 1971.

References

[1] Jim Ambras, Pankaj K. Garg, and Randy Splitter. The Workshop: A Team Programming

Environment. In Proceedings of the 1989 HP European Software Engineering Conference, May

1989.

[2] Brian Beach. Connecting software components with declarative glue. Technical Report HPL-91-

152, Hewlett-Packard Laboratories, Palo Alto, August 1991. Submitted to 14th International

Conference on Software Engineering, Melborne, Australia, 1992.

[3] Martin R. Cagan. The HP Softbench environment: An architecture for a new generation of

software tools. Hewlett-Packard Journal, pages 36{47, June 1990. (See other papers in this

issue.).

[4] Patricia Collins. Towards a reusable domain analysis. Technical report, Hewlett-Packard

Corporate Engineering, Porter Drive, Palo Alto, September 1991. To be presented at 4th

Annual Workshop on Software Reuse, Herndon, VA, Oct 18-22, 1991.

[5] Michael Creech, Dennis Freeze, and Martin L. Griss. Kiosk: A hypertext-based software reuse

tool. Technical Report SSL-TM-91-03, Hewlett-Packard Laboratories, Palo Alto, CA, March

1991.

[6] Michael Creech, Dennis Freeze, and Martin L. Griss. Using hypertext in selecting reusable

software components. Technical Report SSL-91-59, Hewlett-Packard Laboratories, Palo Alto,

CA, May 1991. To appear in Proceedings of Hypertext'91, Dec 1991.

[7] Martin L. Griss. Software reuse at Hewlett-Packard. Technical Report SSL-TM-91-01, Hewlett-

Packard Laboratories, January 1991. Invited submission to the First International Workshop

on Software Reusability, Dortmund, July 3-5, 1991.

[8] Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaces with

InterViews. IEEE Computer, pages 8{22, February 1989.

[9] James Purtilo. The Polylith Software Bus. Technical Report CSD 2469, University of Maryland,

College Park, MD 20742, 1990.

[10] James Purtilo, Aaron Larson, and Je� Clark. A methodology for prototyping-in-the-large. In

Proceedings: 13th International Conference on Software Engineering, pages 2{12, Los Alamitos,

CA, May 1991. IEEE, IEEE Computer Society Press.

[11] Doris Ryan. RAPID/NM, Reusable Architectures for Transaction Processing and Network

Management Applications. AT&T, 1990.

6



[12] Gio Wiederhold, Peter Wegner, and Stefano Ceri. Towards megaprogramming. Technical

Report STAN-CS-90-1341, Stanford University, Stanford, CA, October 1990.

[13] Craig Zarmer. ACEKit overview. Technical Report STL-89-29, Hewlett-Packard Laboratories,

Palo Alto, Ca., nov 1989. A brief overview of the ideas in Szekely and how they have been

instantiated in C++ as ACEKit.

[14] Craig L. Zarmer. ACEKit: An Application Construction Toolkit version 1.0. Technical Report

SSL-TM-90-08, Hewlett-Packard Laboratories, Palo Alto, CA, December 1990.

7


