
A Prototype Software Engineering Environment

for Domain Modeling and Reuse

H. Gomaa, L. Kerschberg, C. Bosch, V. Sugumaran, I. Tavakoli

Center for Software Systems Engineering

Department of Information and Software Systems Engineering

George Mason University

Fairfax, Virginia 22030-4444

Abstract

This paper describes a prototype software engineering environment which has been de-

veloped at George Mason University to demonstrate the concepts of domain modeling and

software reuse. The prototype environment, which is application domain independent, is used

to support the development of domain models and the generation of target system speci�-

cations from them. The prototype environment consists of an integrated set of commercial

o�-the-shelf software tools and custom developed software tools.

Keywords: domain modeling, reuse, software engineering environments, object repository,

requirements elicitation, knowledge-based tool support

1 Introduction

At George Mason University, a project is underway to support software engineering lifecycles, meth-

ods, and prototyping environments to support software reuse at the requirements and design phases

of the software lifecycle, in addition to the coding phase. A reuse-oriented software lifecycle, the

Evolutionary Domain Lifecycle [Gomaa89, Gomaa91] has been proposed, which is a highly itera-

tive lifecycle that takes an application domain perspective allowing the development of families of

systems. A domain analysis and modeling method has also been developed [Gomaa90]. This paper

describes the prototype software engineering environment that has been developed to demonstrate

these concepts.

2 Domain Modeling

An application domain is de�ned to be a collection of systems that share common characteristics. A

domain model is used to capture common characteristics and variations among a family of software

1



systems [Parnas79] in a given application domain. >From the domain model, target systems can

be generated by tailoring the domain model. The concept of generating target systems from an

application domain model has been adopted by various researchers [Batory89, Kang90, Lubars89,

Pyster90].

Reuse is an important goal in domain modeling. The primary objective of the domain modeling

approach to software development is to increase reuse, i.e., not only code reuse, but also of domain

knowledge such as domain requirements, speci�cations and designs.

Applying the domain modeling method, the application domain is modeled by means of the

following views:

� Aggregation Hierarchy. The Aggregation Hierarchy is used to decompose complex aggregate

object types into less complex object types eventually leading to simple object types at the

leaves of the hierarchy.

� Object Communication Diagrams. Objects in the real world are modeled as concurrent pro-

cesses, which communicate with each other using messages. The object communication dia-

grams, which are hierarchically structured, show how objects communicate with each other.

� State Transition Diagrams. As each active object is modeled as a sequential process, it may be

de�ned by means of a �nite state machine and documented using a state transition diagram.

� Generalization / Specialization Hierarchies. As the requirements of a given object type are

changed to meet the needs of a given target system, the object type may be specialized by

adding, modifying or suppressing operations. The variants of a domain object type are stored

in this hierarchy.

� Feature / Object Dependencies. This view shows for each feature (domain requirement) the

object types required to support the feature.

The domain modeling method has been applied to developing a domain model for NASA's

Payload Operations Control Center (POCC) Domain.

3 Prototype Software Engineering Environment

3.1 Overview

A prototype Software Engineering Environment is being developed, which consists of an integrated

set of software tools that support domain modeling and the generation of target system speci�-

cations. In order to expedite development of the prototype, the environment uses commercial-of-

the-shelf software as well as specially developed software. We are using IDE's Software Through

Pictures CASE tool to represent the multiple views of the domain model, although semantically

interpreting the views according to the domain modeling method. The information in the multiple

views is extracted, checked for consistency, and stored in an object repository.

A knowledge based tool is used to assist with target system requirements elicitation and gener-

ation of the target system speci�cation. The tool, implemented in NASA's CLIPS shell, conducts

2



a dialog with the human target system requirements engineer, prompting the engineer for target

system speci�c information. The output of this tool is used to adapt the domain model to generate

the target system speci�cation.

The prototype Software Engineering Environment is a domain independent environment. Thus

it may be used to support the development of a domain model for any application domain that has

been analyzed, and to generate target system speci�cations from it.

3.2 Tool Support for Domain Modeling

The domain modeling activity starts with the creation of the multiple graphical views. The proto-

type environment uses a customized version of IDE's Software through Pictures (StP) as the front

end to capture the multiple views. The StP environment was customized in two ways. First, the

menu structure was changed to make it more consistent with the domain modeling method. The

prototype menu consists of a set of icons, each corresponding to one of the views. Selecting each

icon results in the invocation of the appropriate graphical editor for creating that view. Secondly,

the schema in the underlying TROLL database was evolved by adding a new set of relations that

capture the semantics of the domain model as represented in the graphical views. The relations

serve as the interface between the front end graphical environment and the object repository, and

they are independent of the StP environment.

We also extended the StP environment by integrating our own tools with it, in such a way

that they could access the information in the underlying database as well as adding information

to it. The Domain Model Relations Extractor (DMRE) extracts the information contained in

the multiple views of the domain model from StP's TROLL relational database, interprets the

information semantically according to the domain modeling method, and stores it in a common

underlying relational representation. The Domain Model Relations Browser (DMRB) extracts,

formats, and displays the domain model information in a relational format. The Domain Model

Consistency Checker (DMCC) checks for consistency among the multiple views. Inconsistencies, if

any, are displayed and must be corrected by the domain modeler. The entire process of creating the

domain model relations and checking their consistency is repeated until a consistent set of relations

is generated.

Once the relational representation has been determined to be consistent, the domain analyst uses

the Domain Object Repository Generator tool to create a key component underlying the tools in our

software engineering environment: the object repository. This repository is a single composite object

that is composed of other objects representing domain object types, features, and the relationships

among them which serve to de�ne a domain model. The Domain Object Repository Generator tool

takes the information captured in the relational representation and creates corresponding objects

according to the object repository's schema. For example, if the domain analyst had created eight

object communication diagrams using StP, the Domain Object Repository Generator tool would

create eight instances of class OCD, the class de�ning object communication diagrams. Similarly,

this tool will create objects representing the aggregation hierarchy, generalization/specialization

hierarchies, and state transition diagrams, as well as the domain object types, external object

types, and messages which are represented in these diagrams.

Another tool in our prototype software engineering environment supporting domain modeling is

the Feature/Object Editor tool. Once the object repository representing a domain model has been

3



created, the domain analyst can use this tool to de�ne new features by: 1) giving each new feature

a unique name, 2) entering an informal annotation for each new feature, 3) specifying object types

supporting the feature being de�ned, and 4) specifying other features required by the feature being

de�ned. The Feature/Object Editor can also be used to browse features previously de�ned for a

given domain model, delete features from the domain model, or modify the de�nition of features in

a domain model.

The last tool supporting domain modeling in our prototype software engineering environment

is the Domain Object Repository Report Generator tool. At any time after creating the object

repository the domain analyst can generate a report on the contents of a given domain model by

using this tool which extracts select information from the object repository as speci�ed by the

domain analyst, formats that information using the LaTeX typesetting program, and displays the

resulting document in an X-Windows document previewer.

3.3 Tool Support for Generation of Target System Speci�cations

A target system speci�cation is derived from the domain model by tailoring it according to the

requirements speci�ed for the target system. The process of generating a target system speci�cation

consists of gathering the requirements in terms of domain features, retrieving from the domain model

the corresponding components to support those features, and reasoning about inter-feature and

feature/object dependencies to ensure consistency. The Knowledge-Based Requirements Elicitation

Tool (KBRET) has been developed to facilitate the process of generating target system speci�cations

from the domain model. KBRET is implemented in CLIPS (C Language Integrated Production

System), developed at NASA/Johnson Space Center.

The architecture of KBRET consists of two types of knowledge: domain independent and domain

dependent knowledge. The domain independent knowledge provides control knowledge for the

various functions supported by KBRET. These functions include a browser, a feature selector, a

dependency checker, and a target system generator. The domain dependent knowledge represents

the multiple views of an application domain model, including the feature/object dependencies.

This knowledge is derived from the object repository by the Domain Dependent Knowledge Base

Extractor tool, which structures this knowledge as CLIPS facts.

The separation of domain-independent and domain-dependent knowledge is essential for pro-

viding scale-up and maintainability of domain speci�cations for large domains. Also, since the

domain-independent knowledge is independent of the application domain, it can be used with

domain-dependent knowledge from any application domain to generate target system speci�cations

in that domain.

To generate the target system speci�cation, KBRET enters into a dialog with the target system

engineer and elicits the requirements for the target system. KBRET also provides facilities for

browsing the domain model. During the requirements elicitation process, KBRET presents the

domain model features and the target system engineer can choose the features that are desired in

the target system. Whenever a feature is selected for the target system, the associated feature/object

dependencies are enforced. For example, when a feature with some prerequisite features is selected,

those prerequisite features, if not already selected, are also included in the target system. Similarly,

before deleting a feature from the target system, dependency checking is performed to ensure that

it is not required by any other target system feature.

4



Once feature selection for the target system has been completed, KBRET begins the process

of assembling the target system. The domain kernel object types are automatically included in

the target system. Depending upon the features selected for the target system, the corresponding

variant and optional object types are included. When all the object types required to support the

selected features for the target system are assembled, the target system engineer is presented with

the target system features and object types. KBRET also outputs two �les containing the target

system information that is used in tailoring the domain picture �les to derive the multiple views

for the target system.

Using the two �les generated by KBRET, the Target System Speci�cation Generator (TSSG)

tool tailors the domain model graphical views and generates a set of graphical views for the target

system. The target system views di�er from those of the domain model in two ways. First, the

optional objects that are not selected for the target system are removed. Secondly, in the case

where one or more variants of a domain object type are selected, the object type is replaced by its

variant(s).

4 Acknowledgements

We gratefully acknowledge the assistance of S. Bailin, R. Dutilly, J. M. Moore, and W. Truszkowski

in providing us with information on the POCC. We gratefully acknowledge the major contributions

of Liz O'Hara-Schettino in developing the domain model of the POCC. This work was sponsored

primarily by NASA Goddard Space Flight Center, with support from the Virginia Center of Inno-

vative Technology. The Software Through Pictures CASE tool was donated to GMU by Interactive

Development Environments (IDE).

5 References

[Batory 89 ] Batory D., \The Genesis Database System Compiler: A Result of DomainModeling", Proc. Workshop

on Domain Modeling for Software Engineering, OOPSLA'89, New Orleans, October 1989.

[Gomaa 89 ] GomaaH., R. Fairley and L. Kerschberg, \Towards an Evolutionary Domain Life Cycle Model", Proc.

Workshop on Domain Modeling for Software Engineering, OOPSLA, New Orleans, October 3, 1989.

[Gomaa 90 ] Gomaa H., \A Domain Analysis and Speci�cation Method for Software Reuse", Proc. Third Annual

Workshop on Methods and Tools for Reuse, Syracuse, June 1990.

[Gomaa 91 ] Gomaa H. and L. Kerschberg, \An Evolutionary Domain Life Cycle Model for Domain Modeling and

Target System Generation", Proc. Workshop on Domain Modeling for Software Engineering, International

Conference on Software Engineering, Austin, May 1991.

[Kang 90 ] Kang K. C. et. al., \Feature-Oriented Domain Analysis", Technical Report No. CMU/SEI-90-TR-21,

Software Engineering Institute, November 1990.

[Lubars 89 ] Lubars M. D., \Domain Analysis for Multiple Target Systems", Proc. Workshop on Domain Modeling

for Software Engineering, OOPSLA'89, New Orleans, October 1989.

[Parnas 79 ] Parnas D., \Designing Software for Ease of Extension and Contraction", IEEE Transactions on Soft-

ware Engineering, March 1979.

[Pyster 90 ] Pyster A., \The Synthesis Process for Software Development", in \System and Software Requirements

Engineering", Edited by R. Thayer and M. Dorfman, IEEE Computer Society Press, 1990.

5



6 About the Authors

Hassan Gomaa is a Professor of Information and Software Systems Engineering at George Mason

University, Fairfax, Virginia, where he teaches graduate courses in Software Systems Engineering.

He also has several years industrial experience, most recently at General Electric.

He received his B.Sc. in Electrical Engineering from University College, London University,

England and his Ph.D. in Computer Science from Imperial College, London University. His current

research interests include software engineering methods and tools, analysis and design of concurrent

and real-time systems, software prototyping, software process models, domain analysis and design,

and software reuse. He has published over �fty technical papers.

Larry Kerschberg is Professor and Chairman of the Department of Information and Software

Systems Engineering in the School of Information Technology and Engineering at George Mason

University. He holds a Ph.D. in Systems Engineering from Case Western Reserve University, an

M.Sc. in Electrical Engineering from the University of Wisconsin-Madison, and a B.Sc. degree in

Engineering Science from Case Institute of Technology.

Dr. Kerschberg's research focuses on the areas of data models, database design, data dictionaries,

distributed query processing, and most recently, expert database systems. His current research

interests deal with architectures for expert database systems, models that integrate the speci�cation

of knowledge and data, as well as knowledge-based tools and techniques for knowledge acquisition

and software requirements gathering and speci�cation.

Dr. Kerschberg serves as an Editor-in-Chief of the forthcoming International Journal of Intelli-

gent Information Systems.

Chris Bosch is a doctoral candidate studying Information Technology at George Mason Univer-

sity where his dissertation research focuses on problems associated with the evolution of object-

oriented systems. He holds a B.S. in Aerospace Engineering from the University of Virginia (1982)

and an M.A. in Government from Georgetown University (1985), and is a member of ACM and

AAAI.

Vijayan Sugumaran is a doctoral candidate in Information Technology at George Mason Uni-

versity. He received his B.Tech. and M.S. degrees in Mining Engineering from Indian School of

Mines and University of Alaska-Fairbanks respectively. His research interest includes database

management systems, knowledge-based systems, domain modeling and software engineering.

Iraj Tavakoli received the BS in computer science from Aryamehr Univeristy in Tehran/Iran in

1980, and the MS in computer science from University of Tennessee in 1988. He is currently a PH.D

student in School of Information Technology at George Mason University. His research interests

include software reuse, software engineering environments, domain modeling, and real-time system

design.

6


